
CS203B: Final Examination Solution

September 18, 2015

Grading Policy: For each question, 20% marks are for making an intelligent statement about
the problem, 20% for attempting solution in the right direction, 20% for making progress towards
to solution, 20% for reaching close to solution, and 20% for getting the correct solution.

Question 1. (5 + 5 marks) For a ring R, let UR be the set of units in R. Prove that UR is
a group.

Ring R is called a local ring if IR = R\UR is an ideal of R. Prove that every non-trivial
ideal of R is a subset of IR. It follows immediately that IR is the unique maximal ideal
of R.

Answer 1. Let a ∈ UR. By definition of unit, there exists b ∈ R such that ab = 1. To prove
that UR is a group under multiplication, one needs to show closure and inverse, as other
properties already hold because R is a ring. Any a ∈ UR has b as inverse where ab = 1.
Consider a1, a2 ∈ UR. Then we have a1b1 = 1 = a2b2. So a1a2b1b2 = 1 showing that
a1a2 ∈ UR.

Let I be any ideal of R not contained in IR. Then there exists a ∈ I\IR. Therefore,
a ∈ UR which implies that 1 ∈ I making I = R. Hence, any non-trivial ideal of R is
contained in IR.

Question 2. (10 marks) For any curve C(x, y) = 0 in R2, let Γ(C) = R[x, y]/(C(x, y)). For
any point P ∈ R2 on curve C, i.e., C(P ) = 0, define ΓP (C) as:

ΓP (C) =

{
f

g
| f, g ∈ Γ(C) and g(P ) 6= 0

}
.

Prove that ΓP (C) is a local ring with

IΓP (C) =

{
f

g
| f
g
∈ ΓP (C) and f(P ) = 0

}
.

Answer 2. Consider f1
g1
, f2g2 ∈ ΓP (C). We have g1(P ), g2(P ) 6= 0. Now

f1

g1
+
f2

g2
=
f1g2 + f2g1

g1g2
and

f1

g1
· f2

g2
=
f1f2

g1g2
,

and g1g2(P ) = g1(P ) · g2(P ) 6= 0. Hence ΓP (C) is a ring. Units in ΓP (C) are elements
f
g such that f(P ) 6= 0 and g(P ) 6= 0 since their inverses g

f are in ΓP (C). On the other

hand, if f(P ) = 0, then the inverse g
f does not belong to ΓP (C). So IΓP (C) is the set of all

non-units of ΓP (C). We now prove that it is an ideal. Consider f1
g1
, f2g2 ∈ IΓP (C). Their sum

has numerator f1g2 + f2g1 and (f1g2 + f2g1)(P ) = f1(P )g2(P ) + f2(P )g2(P ) = 0. Hence
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IΓP (C) is closed under addition. The remaining group properies follow from the fact that

ΓP (C) is a ring. For any f
g ∈ ΓP (C), ff1

gg1
(P ) = f(P )f1(P )

g(P )g1(P ) = 0. Hence IΓP (C) is an ideal of

ΓP (C).

Question 3. (10 marks) Ring ΓP (C) carries information about behaviour of curve C at point
P . Consider the curve C1:

−1 −0.5 0.5 1 1.5 2

−2

−1

1

2

C1 : y2 = x3 − x

This is a simple curve with a tangent well-defined at every point on the curve. For such
curves, the local ring at every point is principle. For point P = (0, 0), prove that IΓP (C1)

equals the principle ideal generated by y ∈ ΓP (C1).

Answer 3. We need to prove that IΓP (C1) is principle. If f
g ∈ IΓP (C1), then f(0, 0) = 0 and

g(0, 0) 6= 0. Hence, f(x, y) = xf1(x, y) + yf2(x, y). So any element of IΓP (C1) can be

written as f1
g x + f2

g y and f1
g ,

f2
g ∈ ΓP (C1). Therefore, IΓP (C1) is generated by elements x

and y. Since x and y are elements of ΓP (C1), y2 = x3 − x = x(x2 − 1). So we can write

x =
y

x2 − 1
y,

and y
x2−1

∈ ΓP (C1). Hence ideal IΓP (C1) is generated by the element y and is therefore
principle.

Question 4. (5 + 5 + 5 marks) On the other hand, consider the curve C2:

−1 −0.5 0.5 1 1.5 2

−2

2

C2 : y2 = x3 + x2

This curve is singular at point P = (0, 0), i.e., ∂C2
∂x = 0 = ∂C2

∂y at P . This fact is captured
in ΓP (C2) by the property that IΓP (C2) is not principle. Let us prove it.
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• Show that the ideal IΓP (C2) contains x and y and is generated by these two.

• For an ideal I of ring R, define

Ik = {a1a2 · · · ak | a1, a2, . . . , ak ∈ I}.

Prove that for every k ≥ 2, Ik is an ideal of R and Ik ⊆ Ik−1.

• Prove that if I is a principle ideal, then so is Ik for every k ≥ 2.

It can be shown, with some more work, that I3
ΓP (C2) is not principle and has independent

generators x3 and x2y showing that IΓP (C2) is not principle.

Thus, not only does every curve can be viewed as a ring, every point on the curve can be
viewed as a local ring!!

Answer 4. The proof that ideal IΓP (C2) is generated by x and y is identical to the proof that
the ideal IΓP (C1) is generated by x and y above.

There is an error in the second question statement. It should have been: Prove that for
every k ≥ 2, if I is a finitely generated ideal of R then Ik is an ideal of R and Ik ⊆ Ik−1.
Due to this error, any attempt will get full marks.

Here we prove the correct version. Let I be generated by elements c1, c2, . . ., ct. Then every
k products of these elements belongs to Ik and these products (

(
k+t−1

k

)
many) together

generate Ik as every element of Ik can be written as a combination of these.

Consider a1a2 · · · ak ∈ Ik. Then, a1a2 · · · ak = a1 · (a2 · · · ak) and a2 · · · ak ∈ Ik−1. Hence
a1 · (a2 · · · ak) ∈ Ik−1. This proves that Ik ⊆ Ik−1.

Finally, assume I is a principle ideal. Let c generate I. Let a1, a2, . . . , ak ∈ I with ai = bic,
bi ∈ R. Then a1a2 · · · ak = b1b2 · · · bkck with b1b2 · · · bk ∈ R. Hence, ck generates the ideal
Ik.

Question 5. (5 + 5 marks) Consider the following set of numbers:

Zp =
{a
b
| gcd(b, p) = 1

}
,

for prime number p.

• Prove that Zp is a local ring.

• Prove that Zp/IZp is isomorphic to field Fp.

Answer 5. Let a1
b1
, a2b2 ∈ Zp. Then,

a1

b1
+
a2

b2
=
a1b2 + a2b1

b1b2
and

a1

b1
· a2

b2
=
a1a2

b1b2
,

and gcd(b1b2, p) = 1. Hence, Zp is closed under addition and multiplication. It follows
that Zp is a ring (remaining properties follow as Zp is a subset of Q). The units of Zp

are numbers a
b such that gcd(a, p) = 1 = gcd(b, p). The set of non-units, IZp is an ideal

because if a1
b1
, a2b2 ∈ IZp and a

b ∈ Zp, then p divides both a1b2 +b1a2 and aa1 since it divides
both a1 and a2.

Elements of quotient ring Zp/IZp are a
b + IZp and elements of Z/(p) are a + (p). Define

mapping φ : Zp/IZp 7→ Z/(p) as:

φ(
a

b
+ IZp) = ab−1 + (p),
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where b−1b = 1 ( mod p). Since p does not divide b, b−1 ( mod p) exists. It is a ring
homomorphism since:

φ(
a1

b1
+
a2

b2
+ IZp) = (a1b2 + b1a2)b−1

1 b−1
2 + (p) = a1b

−1
1 + a2b

−1
2 + (p) = φ(

a1

b1
) + φ(

a2

b2
),

and

φ((
a1

b1
+IZp) ·(a2

b2
+IZp)) = a1a2b

−1
1 b−1

2 +(p) = (a1b
−1
1 +(p)) ·(a2b

−1
2 +(p)) = φ(

a1

b1
) ·φ(

a2

b2
).

Suppose φ(ab + IZp) = 0. Then ab−1 ∈ (p) which implies that p divides a. Hence, a
b ∈ IZp .

Therefore, kernel of φ is {0}, making it one-to-one. It is straightforward to see that φ is
also onto, and hence an isomorphism.
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