CS 203B: Mathematics for Computer Science-III Assignment 2

Deadline: 18:00 hours, August 19, 2015

General Instructions:

- Write your solutions by furnishing all relevant details (you may assume the results already covered in the class).
- You are strongly encouraged to solve the problems by yourself.
- You may discuss but write the solutions on your own. Any copying will get zero in the whole assignment.
- If you need any clarification, please contact any one of the TAs.
- Please submit the assignment at KD-213/RM-504 before the deadline. Delay in submission will cause deduction in marks.

Question 1: [10]

Prove that there is no nontrivial homomorphism from the group $(\mathbb{Q}, +)$ to (\mathbb{Q}^*, \times) , where $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$. By trivial homomorphism, we mean the homomorphism that maps every element of one group to the identity element of another one.

Question 2: [5+5]

(a) (Euler's theorem) For a number n, say $\phi(n)$ is the number of positive elements co-prime to n and less than n. For any a which is co-prime to n, $a^{\phi(n)} = 1 \pmod{n}$.

Prove this theorem.

(b) Use the group \mathbb{Z}_p^* under multiplication operation to show that if p is a prime number, then $(p-1)! = -1 \pmod{p}$. This theorem is known as Wilson's theorem.

Question 3: [10]

If an abelian group has subgroups of order m and n respectively, then show that it has a subgroup whose order is the least common multiple of m and n.

Question 4: [10]

For any group G, each element $g \in G$ can be identified with a map $G \to G$. Thus, show that every group of order n is isomorphic to some subgroup of S_n .

Question 5: [7+3]

A group G is said to be *cyclic* if there exists an element $g \in G$ such that $G = \{g^i | i \text{ is an integer}\}$ and g is called the *generator* of that cyclic group.

- (a) Prove that any subgroup of a cyclic group is itself a cyclic group.
- (b) How many generators does a cyclic group of order n have?

Question 6: [10]

Suppose p be an odd prime and if

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1} = \frac{a}{b},$$

where a and b are integers, show that p|a.

Question 7: [5+5+10]

There were three errors in the claims made in the class. No one caught it. You need to be more vigilant! In this question, these the errors are fixed.

- 1. It was claimed that $Z_4 \cong Z_2 \oplus Z_2$. Prove that this is not possible. It was claimed that if H < G, G commutative, and $G/H \cong \hat{H} < G$, then $G \cong H \oplus \hat{H}$. This example shows that this is not always true! Think where does the argument shown in the class goes wrong.
- 2. It was claimed that if G is a finite commutative group, |G| = n, and $n = \prod_{j=1}^{k} p_j^{e_j}$ with p_j 's distinct primes, then

$$G \cong Z_{p_1}^{e_1} \oplus Z_{p_2}^{e_2} \oplus \dots \oplus Z_{p_k}^{e_k}.$$

Give a counterexample to this claim. (Hint: consider $Z_2 \oplus Z_2$.)

The correct version of the theorem is: if G is a finite commutative group, and |G| = n then

$$G \cong Z_{p_1}^{e_1} \oplus Z_{p_2}^{e_2} \oplus \cdots \oplus Z_{p_k}^{e_k},$$

where p_j 's need not be distinct and $n = \prod_{j=1}^k p_j^{e_j}$.

- 3. When are p_j 's distinct? Prove that the following statements are equivalent:
 - (a) All p_j 's are distinct.
 - (b) G is a cyclic group.
 - (c) The number of solutions in G of the equation $x^m = e$ (e is the identity element) is at most m for every positive integer m.

Question 8: [10]

Let $\phi: G \mapsto G$ be a homomorphism of group G. Kernel of ϕ is defined as:

$$K = \{ a \in G \mid \phi(a) = e \}.$$

Prove that K < G and $\phi(G) \cong G/K$.