
CS202A Endsem Exam Solutions

Q1 (a) We know that a→ b ≡ ¬(a ∧ ¬b)

⇒ (a ∧ ¬b) ≡ ¬(a→ b)

⇒ a ∧ b ≡ ¬(a→ ¬b)

(b) Consider any proposition φ constructed using logical connectives ∨ and
∧ only. It is easy to see (formally by induction on the length of φ) that
for valuation where all atomic propositions are assigned truth value
false, φ evaluates to false. So φ can't be a tautology.

(c) Rule ∨i1 becomes
A

¬(¬A ∧ ¬B)
. We give a ND derivation of it below.

1. A Premise

��-Box B1 opens���

2. ¬A ∧ ¬B Assumption

3. ¬A ∧e 2
4. ⊥ ¬e 1,3

��-Box B1 closes���

5. ¬(¬A ∧ ¬B) ¬i 2-4

• Proof for rule ∨i2 is almost the same.

For ∨e we need to show that given derivations A ` θ and B ` θ in the
new system, we can derive ¬(¬A ∧ ¬B) ` θ.
We give a ND derivation of this below.

The derivations A ` θ, B ` θ are used from 3-(3.s) and 6-(6.t) in the
proof below.
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1. ¬(¬A ∧ ¬B)

��-Box B1 opens���

2. ¬θ Assumption

��-Box B2 opens���

3. A Assumption

***********************

(3.1)

. . .

(3.s) θ

***********************

4. ⊥ ¬e 2, (3.s)
��-Box B2 closes���

5. ¬A ¬i 3-4
��-Box B2 opens���

6. B Assumption

***********************

(6.1)

. . .

(6.t) θ

***********************

7. ⊥ ¬e 2, (6.t)
���Box B2 closes���

8. ¬B ¬i 6-7
9. ¬A ∧ ¬B ∧i 5,8
10. ⊥ ¬e 1,9

��-Box B1 closes���

11. θ PBC 2-10
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Q2 (a)

1. ¬∀xφ Premise

��-Box B1 begins��

2. ¬∃x¬φ Assumption

��-Box B2 begins��

x0

��-Box B3 begins��

3. ¬φ[x0/x] Assumption

4. ∃x¬φ ∃i 3

5. ⊥ ¬e 2,4
��-Box B3 closes��

6. φ[x0/x] PBC 3-5

��-Box B2 closes��

7. ∀xφ ∀ i Box B2

8. ⊥ ¬e 1,7
��-Box B1 closes��

9. ∃x¬φ PBC 2-8

(b) ∀ Introduction Rule

Γ ` φ[x0/x]

Γ ` ∀xφ
where x does not occur free in Γ.

∀ Elimination Rule
Γ ` ∀xφ

Γ ` φ[t/x]
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(c)

1. ∀x(φ ∧ ψ) ` ∀x(φ ∧ ψ) Axiom

2. ∀x(φ ∧ ψ) ` φ ∧ ψ ∀e 1

3. ∀x(φ ∧ ψ) ` φ ∧e1 2

4. ∀x(φ ∧ ψ) ` ∀xφ ∀i 3 (x is not free in ∀x(φ ∧ ψ))

5. ∀x(φ ∧ ψ) ` ψ ∧e2 2

6. ∀x(φ ∧ ψ) ` ∀xψ ∀i 5 (x is not free in ∀x(φ ∧ ψ))

7. ∀x(φ ∧ ψ) ` ∀xφ ∧ ∀xψ ∧i 4,6

Q3(a) Note that 1 is not in the vocabulary of our structure. So φ(x, y) can
not be taken as y = x+ 1.

Following are some of the correct answers.

1. φ(x, y) ≡ x < y ∧ ¬∃z(x < z ∧ z < y)

2. φ(x, y) ≡ ∃z[y = x+ z ∧ z 6= 0 ∧ z · z = z]

(b) ∃u∃v[∀a∀b∀c(1 ≤ a < x ∧ β(u, v, a, b) ∧ β(u, v, a, c)→ b = c)

∧β(u, v, 1, 2)

∧ ∀w∀z1(1 ≤ w < x ∧ β(u, v, w, z1)→ β(u, v, w + 1, 2 · z1))
∧β(u, v, x, y)]

The above formula essentially asserts that there is a sequence
2, 22, . . . , 2i, 2i+1, . . . , 2x whose xth element is y.
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Q4(a)

(i) Given below is a ND proof of this sequent

��-Box B1 begins���

1. ∃y∀xA(x, y) Assumption

��-Box B2begins���

x0

��-Box B3 begins���

2. y0 ∀xA(x, y0) Assumption

3. A(x0, y0) ∀e, 2
4. ∃yA(x0, y) ∃i, 3

��-Box B3 closes���

5. ∃yA(x0, y) ∃e 1, 2-4
��-Box B2 closes���

6. ∀x∃yA(x, y) ∀i 2-5 (Box B2)

��-Box B1 closes���

7. ∃y∀xA(x, y)→ ∀x∃yA(x, y) → i 1-6

(ii) Consider interpretation (N,AN) where

N = {1, 2, 3, . . .} and AN(x, y) ≡ x < y.

∀x∃yA(x, y) is true.

(∵ for every number there is a number bigger than it)

∃y∀xA(x, y) is false.

(∵ there is no number which is bigger than every number)

So ∀x∃yA(x, y)→ ∃y∀xA(x, y) is false in this interpretation.

(b) =⇒ (Left to right direction)

Let M be a structure over Σ satisfying θ. We denote domain of M by
dom(M).

M |= θ

⇒ for every a, b ∈ dom(M) there is a c ∈ dom(M) s.t. M |= φ(a, b, c).

We de�ne fM(a, b) = c, for some c as above.
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⇒M |= φ(a, b, fM(a, b))

⇒M extended with fM is a model of χ.

⇒ χ is satis�able.

⇐= (Right to left direction)

Assume χ is satis�able in some structure M over Σ ∪ {f}.
So for any a, b ∈ dom(M), M |= φ(a, b, fM(a, b))

⇒M |= ∃zφ(a, b, z)

Let M− be the structure obtained by removing fM . M− is a
structure over Σ.

⇒M− |= ∃zφ(a, b, z) (∵ f does not occcur in φ)

⇒M− |= ∀x∀y∃zφ(x, y, z)

⇒ θ is satis�able.

Q5(a) Let θ ≡ (B → φ1) ∧ (¬B → φ2). The desired proof is written below
in linear form.

1. (φ1)C1(ψ) Premise

2. (φ2)C2(ψ) Premise

3. θ ∧B → φ1 Tautology

4. (θ ∧B)C1(ψ) Implied 3,1

5. θ ∧ ¬B → φ2 Tautology

6. (θ ∧ ¬B)C2(ψ) Implied 5,2

7. (θ)ifB{C1}else{C2}(ψ) if-Statement 4,6

(b) (i) Let div(i, j) stand for ‘i divides j'.

De�ne inv(k) ≡ ∀j(0 ≤ j < k ∧ div(3, j)→ a[j] 6= x)

ψ ≡ (i0 < n→ α) ∧ (i0 = n→ inv(n)),

where α ≡ (a[i0] = x) ∧ div(3, i0) ∧ inv(i0)
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(ii) Loop invariant: div(3, i) ∧ inv(i)

Annotated Program is given below with assertions shown between two
asterisks.

*true*

⇓
*div(3, 0) ∧ inv(0)*

i = 0;

*div(3, i) ∧ inv(i)*

while (a[i] 6= x ∧ i+ 3 < n) {

*div(3, i) ∧ inv(i) ∧ (a[i] 6= x ∧ i+ 3 < n)*

⇓
*div(3, i+ 3) ∧ inv(i+ 3)*

i = i+ 3;

*div(3, i) ∧ inv(i)*

}

*div(3, i) ∧ inv(i) ∧ (a[i] = x ∨ i+ 3 ≥ n)*

⇓
*(a[i] = x→ θ) ∧ (a[i] 6= x→ inv(n))*

if (a[i] == x) *θ*{i0 = i; }
else *inv(n)*{i0 = n; }

∗ψ∗
where θ ≡ (i < n→ a[i] = x ∧ div(3, i) ∧ inv(i)) ∧ (i = n→ inv(n))

For `if ...else ...' command we have used rule in part (a).

We need to prove two implications shown as ⇓ above. Namely:

1. div(3, i) ∧ inv(i) ∧ (a[i] 6= x ∧ i+ 3 < n) implies

div(3, i+ 3) ∧ inv(i+ 3)

2. div(3, i) ∧ inv(i) ∧ (a[i] = x ∨ i+ 3 ≥ n) implies

(a[i] = x→ θ) ∧ (a[i] 6= x→ inv(n))
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Proof of (1):

div(3, i) clearly implies div(3, i+ 3).

We only need to show inv(i+ 3).

That is, for any j < i + 3 s.t. div(3, j) we need to show that
a[j] 6= x.

div(3, i) ∧ j < i+ 3 ∧ div(3, j) implies j ≤ i.

For j < i and div(3, j), a[j] 6= x follows from inv(i).

For j = i, a[i] 6= x is given.

This shows inv(i+ 3).

Proof of (2):

We consider two cases:

1. a[i] = x.
In this case, �rst conjunct of θ is immediate, as everything on
the right of implication is true.
For the second conjunct of θ, if i = n then inv(n) is inv(i)
but inv(i) is given. This shows θ.
The implication starting with a[i] 6= x trivially holds as we
are considering the case a[i] = x.

2. a[i] 6= x ∧ i+ 3 ≥ n.
The conjunct (a[i] = x→ θ) holds trivially.
We only need to show inv(n).
In the proof of (1) above, we have shown inv(i+ 3) from
assumptiondiv(3, i) ∧ inv(i) ∧ a[i] 6= x.
So inv(i+ 3) holds in the present case also.
As n ≤ i+ 3, inv(i+ 3) implies inv(n).
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Q6

(a)
(η ∧B ∧ 0 ≤ E = E0)C(η ∧ 0 ≤ E < E0)

(η ∧ 0 ≤ E)whileB{C}(η ∧ ¬B)

(b) φ ≡ x ≥ 0 ∧ even(x)

Annotated Program is

*x ≥ 0 ∧ even(x)*

while(x 6= 0){
*even(x) ∧ x 6= 0 ∧ 0 ≤ x = E0*

⇓
*even(x− 2) ∧ 0 ≤ x− 2 < E0*
x = x− 2;

*even(x) ∧ 0 ≤ x < E0*
}

*even(x) ∧ x = 0*

⇓
(true)

In above annotation we have used loop invariant even(x) and

for termination expression E is x.

Proof of implications:

1. Last implication `even(x) ∧ x = 0 implies true' is obvious.

2. We only have to show that
even(x) ∧ x 6= 0 ∧ 0 ≤ x = E0 implies
even(x− 2) ∧ 0 ≤ x− 2 < E0.
This follows from:

(a) x = E0 → x− 2 < E0

(b) x 6= 0 ∧ even(x) ∧ x ≥ 0 implies x > 0 ∧ even(x)
which implies x− 2 ≥ 0 ∧ even(x− 2).

���������x-x-x���������
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