CS202A Endsem Exam Solutions

Q1 (a) We know that $a \to b \equiv \neg(a \land \neg b)$

 $\Rightarrow (a \land \neg b) \equiv \neg (a \to b)$ $\Rightarrow a \land b \equiv \neg (a \to \neg b)$

(b) Consider any proposition ϕ constructed using logical connectives \vee and \wedge only. It is easy to see (formally by induction on the length of ϕ) that for valuation where all atomic propositions are assigned truth value **false**, ϕ evaluates to **false**. So ϕ can't be a tautology.

(c) Rule
$$\forall i1$$
 becomes $\frac{A}{\neg(\neg A \land \neg B)}$. We give a ND derivation of it below.

- 1. A Premise ——Box B1 opens— 2. $\neg A \land \neg B$ Assumption 3. $\neg A \land e 2$ 4. $\bot \neg e 1,3$ ——Box B1 closes— 5. $\neg(\neg A \land \neg B) \neg i 2-4$
- Proof for rule $\forall i2$ is almost the same.

For $\forall e$ we need to show that given derivations $A \vdash \theta$ and $B \vdash \theta$ in the new system, we can derive $\neg(\neg A \land \neg B) \vdash \theta$.

We give a ND derivation of this below.

The derivations $A \vdash \theta$, $B \vdash \theta$ are used from 3-(3.s) and 6-(6.t) in the proof below.

1. $\neg(\neg A \land \neg B)$ ——Box B1 opens—— 2. $\neg \theta$ Assumption ——Box B2 opens—— 3. A Assumption ***** (3.1). . . (3.s) θ ****** 4. $\perp \neg e 2, (3.s)$ ——Box B2 closes— 5. $\neg A \quad \neg i \ 3-4$ ——Box B2 opens— Assumption 6. *B* ****** (6.1). . . (6.t) θ ***** 7. $\perp \neg e 2, (6.t)$ ——Box B2 closes—— 8. $\neg B \quad \neg i \ 6-7$ 9. $\neg A \land \neg B \land i 5.8$ 10. $\perp \neg e \ 1,9$ ——Box B1 closes—— 11. *θ* PBC 2-10

Q2 (a)

- 1. $\neg \forall x \phi$ Premise —-Box B1 begins—— 2. $\neg \exists x \neg \phi$ Assumption —-Box B2 begins—
 - x_0

——Box B3 begins——

- 3. $\neg \phi[x_0/x]$ Assumption
- 4. $\exists x \neg \phi \quad \exists i \ 3$
- 5. $\perp \neg e 2,4$ -----Box B3 closes-----
- 6. $\phi[x_0/x]$ PBC 3-5 —-Box B2 closes—-
- 7. $\forall x \phi \quad \forall i \text{ Box B2}$
- 8. $\perp \neg e \ 1,7$ ——Box B1 closes——
- 9. $\exists x \neg \phi$ PBC 2-8
- (b) \forall Introduction Rule

 $\frac{\Gamma \vdash \phi[x_0/x]}{\Gamma \vdash \forall x \phi} \quad \text{where } x \text{ does not occur free in } \Gamma.$

 $\forall \text{ Elimination Rule} \\ \frac{\Gamma \vdash \forall x \phi}{\Gamma \vdash \phi[t/x]}$

- 1. $\forall x(\phi \land \psi) \vdash \forall x(\phi \land \psi)$ Axiom 2. $\forall x(\phi \land \psi) \vdash \phi \land \psi \quad \forall e \ 1$ 3. $\forall x(\phi \land \psi) \vdash \phi \quad \land e1 \ 2$ 4. $\forall x(\phi \land \psi) \vdash \forall x\phi \quad \forall i \ 3 \quad (x \text{ is not free in } \forall x(\phi \land \psi))$ 5. $\forall x(\phi \land \psi) \vdash \psi \quad \land e2 \ 2$ 6. $\forall x(\phi \land \psi) \vdash \forall x\psi \quad \forall i \ 5 \quad (x \text{ is not free in } \forall x(\phi \land \psi))$ 7. $\forall x(\phi \land \psi) \vdash \forall x\phi \land \forall x\psi \quad \land i \ 4,6$
- Q3(a) Note that 1 is not in the vocabulary of our structure. So $\phi(x, y)$ can not be taken as y = x + 1. Following are some of the correct answers.

1.
$$\phi(x, y) \equiv x < y \land \neg \exists z (x < z \land z < y)$$

(c)

2.
$$\phi(x,y) \equiv \exists z [y = x + z \land z \neq 0 \land z \cdot z = z]$$

- (b) $\exists u \exists v [\forall a \forall b \forall c (1 \leq a < x \land \beta(u, v, a, b) \land \beta(u, v, a, c) \rightarrow b = c) \\ \land \beta(u, v, 1, 2) \\ \land \forall w \forall z_1 (1 \leq w < x \land \beta(u, v, w, z_1) \rightarrow \beta(u, v, w + 1, 2 \cdot z_1)) \\ \land \beta(u, v, x, y)]$
- The above formula essentially asserts that there is a sequence $2, 2^2, \ldots, 2^i, 2^{i+1}, \ldots, 2^x$ whose x^{th} element is y.

Q4(a)

(i) Given below is a ND proof of this sequent ——-Box B1 begins-1. $\exists y \forall x A(x, y)$ Assumption ——-Box B2begins x_0 –Box B3 begins—— 2. $y_0 \quad \forall x A(x, y_0)$ Assumption $\forall e, 2$ $A(x_0, y_0)$ 3. $\exists y A(x_0, y)$ 4. $\exists i, 3$ ——-Box B3 closes— $\exists e \ 1, \ 2-4$ 5. $\exists y A(x_0, y)$ ——-Box B2 closes— 6. $\forall x \exists y A(x, y) \quad \forall i \ 2\text{-}5 \text{ (Box B2)}$ ——Box B1 closes—— 7. $\exists y \forall x A(x, y) \rightarrow \forall x \exists y A(x, y) \rightarrow i$ 1-6 (ii) Consider interpretation (N, A^N) where $N = \{1, 2, 3, \ldots\}$ and $A^N(x, y) \equiv x < y$. $\forall x \exists y A(x, y)$ is true. (: for every number there is a number bigger than it) $\exists y \forall x A(x, y)$ is false. (: there is no number which is bigger than every number)

So $\forall x \exists y A(x, y) \rightarrow \exists y \forall x A(x, y)$ is false in this interpretation.

(b) \implies (Left to right direction)

Let M be a structure over Σ satisfying θ . We denote domain of M by dom(M).

 $M \models \theta$

 $\Rightarrow \text{ for every } a, b \in dom(M) \text{ there is a } c \in dom(M) \text{ s.t. } M \models \phi(a, b, c).$ We define $f^M(a, b) = c$, for some c as above. $\Rightarrow M \models \phi(a, b, f^M(a, b))$

 $\Rightarrow M$ extended with f^M is a model of χ .

 $\Rightarrow \chi$ is satisfiable.

 \Leftarrow (Right to left direction)

Assume χ is satisfiable in some structure M over $\Sigma \cup \{f\}$. So for any $a, b \in dom(M), M \models \phi(a, b, f^M(a, b))$ $\Rightarrow M \models \exists z \phi(a, b, z)$ Let M^- be the structure obtained by removing f^M . M^- is a structure over Σ . $\Rightarrow M^- \models \exists z \phi(a, b, z) (\because f \text{ does not occcur in } \phi)$ $\Rightarrow M^- \models \forall x \forall y \exists z \phi(x, y, z)$ $\Rightarrow \theta$ is satisfiable.

Q5(a) Let $\theta \equiv (B \to \phi_1) \land (\neg B \to \phi_2)$. The desired proof is written below in linear form.

- 1. $(\phi_1)C_1(\psi)$ Premise
- 2. $(\phi_2)C_2(\psi)$ Premise
- 3. $\theta \wedge B \to \phi_1$ Tautology
- 4. $(\theta \wedge B)C_1(\psi)$ Implied 3,1
- 5. $\theta \wedge \neg B \to \phi_2$ Tautology
- 6. $(\theta \wedge \neg B)C_2(\psi)$ Implied 5,2
- 7. (θ) **if** $B\{C_1\}$ **else** $\{C_2\}(\psi)$ **if**-Statement 4,6
- (b) (i) Let div(i, j) stand for 'i divides j'.

Define $inv(k) \equiv \forall j (0 \leq j < k \land div(3, j) \rightarrow a[j] \neq x)$ $\psi \equiv (i_0 < n \rightarrow \alpha) \land (i_0 = n \rightarrow inv(n)),$ where $\alpha \equiv (a[i_0] = x) \land div(3, i_0) \land inv(i_0)$

(ii) Loop invariant: $div(3, i) \wedge inv(i)$

Annotated Program is given below with assertions shown between two asterisks.

```
*true*
     ∜
*div(3,0) \wedge inv(0)^*
i = 0;
*div(3,i) \wedge inv(i)^*
while (a[i] \neq x \land i + 3 < n) {
   ^*div(3,i) \wedge inv(i) \wedge (a[i] \neq x \wedge i + 3 < n)^*
                ∜
   *div(3, i+3) \wedge inv(i+3)^*
   i = i + 3;
   *div(3,i) \wedge inv(i)^*
}
^*div(3,i) \wedge inv(i) \wedge (a[i] = x \lor i + 3 \ge n)^*
           11
^*(a[i] = x \to \theta) \land (a[i] \neq x \to inv(n))^*
if (a[i] == x) * \theta * \{i_0 = i; \}
    else *inv(n)*\{i_0 = n;\}
*\psi*
```

where $\theta \equiv (i < n \rightarrow a[i] = x \land div(3, i) \land inv(i)) \land (i = n \rightarrow inv(n))$ For 'if ...else ...' command we have used rule in part (a).

We need to prove two implications shown as \Downarrow above. Namely:

- 1. $div(3, i) \wedge inv(i) \wedge (a[i] \neq x \wedge i + 3 < n)$ implies $div(3, i + 3) \wedge inv(i + 3)$
- 2. $div(3,i) \wedge inv(i) \wedge (a[i] = x \lor i + 3 \ge n)$ implies $(a[i] = x \to \theta) \wedge (a[i] \ne x \to inv(n))$

Proof of (1):

div(3, i) clearly implies div(3, i + 3). We only need to show inv(i + 3). That is, for any j < i + 3 s.t. div(3, j) we need to show that $a[j] \neq x$. $div(3, i) \land j < i + 3 \land div(3, j)$ implies $j \leq i$. For j < i and div(3, j), $a[j] \neq x$ follows from inv(i). For j = i, $a[i] \neq x$ is given. This shows inv(i + 3).

Proof of (2):

We consider two cases:

1. a[i] = x.

In this case, first conjunct of θ is immediate, as everything on the right of implication is true.

For the second conjunct of θ , if i = n then inv(n) is inv(i) but inv(i) is given. This shows θ .

The implication starting with $a[i] \neq x$ trivially holds as we are considering the case a[i] = x.

2. $a[i] \neq x \land i + 3 \ge n$.

The conjunct $(a[i] = x \rightarrow \theta)$ holds trivially. We only need to show inv(n). In the proof of (1) shows, we have shown $inv(i + \theta)$

In the proof of (1) above, we have shown inv(i+3) from assumption $div(3,i) \wedge inv(i) \wedge a[i] \neq x$.

So inv(i+3) holds in the present case also.

As $n \leq i+3$, inv(i+3) implies inv(n).

(a)
$$\frac{(\eta \land B \land 0 \leq E = E_0)C(\eta \land 0 \leq E < E_0)}{(\eta \land 0 \leq E) \text{while} B\{C\}(\eta \land \neg B)}$$

(b) $\phi \equiv x \geq 0 \land even(x)$
Annotated Program is
 $*x \geq 0 \land even(x)^*$
while $(x \neq 0)$ {
 $*even(x) \land x \neq 0 \land 0 \leq x = E_0^*$
 \downarrow
 $*even(x-2) \land 0 \leq x-2 < E_0^*$
 $x = x-2;$
 $*even(x) \land 0 \leq x < E_0^*$
}
 $*even(x) \land x = 0^*$
 \downarrow
(true)

In above annotation we have used loop invariant even(x) and for termination expression E is x.

Proof of implications:

- 1. Last implication ' $even(x) \wedge x = 0$ implies true' is obvious.
- 2. We only have to show that $even(x) \land x \neq 0 \land 0 \leq x = E_0$ implies $even(x-2) \land 0 \leq x-2 < E_0$. This follows from:
 - (a) $x = E_0 \to x 2 < E_0$
 - (b) $x \neq 0 \land even(x) \land x \ge 0$ implies $x > 0 \land even(x)$ which implies $x - 2 \ge 0 \land even(x - 2)$.

-x-x-x-

 $\mathbf{Q6}$