Practice Problems

 $\mathbf{Q1}$

- (a) Give a ND proof of $\forall x \phi(x) \to \psi \vdash \exists x(\phi(x) \to \psi)$, where $x \notin free(\psi)$.
- (b) Convert the following formula in prenex normal form. $\forall x \exists y (A(x) \to B(y)) \to \exists y \forall x (A(x) \to B(y))$
- Q2 Consider the following formulae.
 - 1. $\forall x \neg R(x, x)$
 - 2. $\forall x \forall y \forall z (R(x,y) \land R(y,z) \to R(x,z))$
 - 3. $\forall x \exists y R(x, y)$
 - (a) Show a model of these formulae. (That is, show a structure (A, R^A) , in which all these formulae are true).
 - (b) Argue clearly that evey model of these formulae has infinite domain.
- **Q3** Let $I = (M, \sigma)$ be an interpretation. We denote the value of any term runder this interpretation as I(r). Let $I' = (M, \sigma[I(r)/x])$.
- (a) For any term t show that I'(t) = I(t[r/x]). [Hint: use induction on t]
- (b) Using (a) show that $I \models \phi[r/x]$ iff $I' \models \phi$
- (c) Using (b) prove soundness of proof system for FOL covered in class.

Q4 In this question we see the construction of Godel's β predicate which allows to code finite sequence of natural numbers (of unbounded length) in arithmetic.

Let $n_1, \ldots n_k$ be any sequence of natural numbers.

Let $m = max \{k, n_1, \dots n_k\}$.

Define for $i \in \{1, ..., k\}, p_i = 1 + (i+1)(m!)$.

- (a) Show that p_i, p_j are relatively coprime for $i \neq j$.
- (b) Define a first order formula $\beta(x, y, i, z)$ over the vocabulary of natural number structure $(\{+, \times, 0, <\})$, s.t. for any sequence $n_1, \ldots n_k$ of natural numbers there exist x and y s.t. for all $1 \le i \le k, N \models \beta(x, y, i, z)$ iff $z = n_i$. [Hint: use CRT, y can be taken as m! above].
- **Q5** Consider the program below which we denote as P in the following.

```
y=0;
while (y*y <= x){
y=y+1;
}
y=y-1;
```

Prove the following in Hoare logic. The proof should be presented by inserting appropriate assertions in the program and justifying any non-obvious implications separately.

- (a) $\vdash_{par} (x \ge 1) P (y^2 \le x \land x < (y+1)^2)$
- **(b)** ⊢_{tot} (x ≥ 1) P (y² ≤ x ∧ x < (y + 1)²)
- (c) $\vdash_{par} (x = 0) P (y = 0)$
- (d) $\vdash_{tot} (x < 0) P (x < 0).$

x-x-x