Second Edition

Logic in Computer Science:
Modelling and reasoning about systems

Solutions to designated exercises
MiICHAEL HuTH and MARK RYAN

&

1 p — q premise
2 -q premise
3 p assumption e @ e @
4 q —el,3
5 L —e 4,2
6 -p -i3-5 e e
k = 2;
t = al1]
s = al[ll;

while (k != n+1) {
t = min(t+alk], alk]);
s = min(s,t);
k = k+1;

}

(© Michael Huth and Mark Ryan, 2004

Please report errors and ommissions to:

MICHAEL HUTH
Department of Computing
Imperial College London, UK
mrh@doc.imperial.ac.uk

Contents

Propositional logic 4
Predicate logic 35
Verification by model checking 56
Program verification 75
Modal logics and agents 90
Binary decision diagrams 102

1

Propositional logic

EXERCISES 1.1 (p.78)

1(a).

1(d).

1(h).

3

We chose p to stand for “The sun shines today.” and q denotes “The
sun shines tomorrow.” The corresponding formula is then

p—q.

NB: If we had chosen ¢ to denote “The sun does not shine tomorrow.”
then the corresponding formula would be

pP—q.
We choose
p : “A request occurs.”
q : “The request will eventually be acknowledged.”

“The requesting process will eventually make progress.”
The formula representing the declarative sentence is then
p—(qVv-r).

NB: If we had chosen r to denote “The requesting process won’t ever
be able to make progress,” the corresponding formula would be

p—(qVr).
We choose
r @ “Today, it will shine.”
s : “Today, it will rain.”

The resulting formula is (r V s) A =(r A s).

Propositional logic)

1(i). The proposition atoms we chose are

p : “Dick met Jane yesterday.”
g : “Dick and Jane had a cup of coffee together.”
r @ “Dick and Jane had a walk in the park.”

This results in the formula
p—=>qg\NrT

which reads as p — (¢ V r) if we recall the binding priorities of our
logical operators.

2(a). ((=p)Agq) — -

2(c). (p—q) — (r—(sVi)).

2(e). (pVq) = ((=p) Ar).

2(g). The expression pV g Ar is problematic since A and V have the same
binding priorities, so we have to insist on additional brackets in order
to resolve this conflict.

EXERCISES 1.2 (p.78)
1(a). (Bonus) We prove the validity of (p Ag) A7, sAtFgAs by

1 (pAgq) Ar premise
2 sAt premise
3 pAgq Nep 1

4 q Aeg 3

5 s Aep 2

6 gNs A 4,5

1(c) We prove the validity of (p Agq) ArEpA (¢ Ar) by

1 (pAg) AT premise
2 pAg Nep 1

3 T Aeg 1

4 p Nep 2

5 q Aeg 2

6 gAT A5, 3
7 pA(gAT) Ni4,6

6 Propositional logic

1(e). One possible proof of the validity of ¢ — (p — r),—-r,q - —p is

1 g — (p—r) premise
2 =7 premise
3 q premise
4 p—rT —el,3
5 —p MT 4,2

1(f). We prove the validity of F (p A q) — p by

1 pAq assumption
2 P ey 1
3 pANg—p —il-—2

1(h). We prove the validity of p - (p — q) — ¢ by

1 P premise

2 p—q assumption
3 q —e 2,1

4 p—9q)—q —i2-3

1(i). We prove the validity of (p > r)A (¢ —>71)FpAg— r by

1 (p—=7)AN(g—r) premise

2 PAQ assumption
3 P Nep 2

4 p—T Nep 1

5 r —e 4,3

6 pAg—T —i2—-5

1(j). We prove the validity of ¢ > r+ (p > ¢q¢) — (p =) by

Propositional logic 7

1 q—T premise

2 p—q assumption
3 P assumption
4 q —e 2,3

5 r —e 1,4

6 p—r —i3—-5

7 p—q) >(p—or) —i2-6

1(1). We prove the validity of p — ¢,7 > skFpVr — qV s by

1 p—q premise
2 T8 premise
3 pVvr assumption
4 p assumption
) q —e 1,4
6 qVs Vi; 5
7 r assumption
8 s —e 2,7
9 qVs Vig 8
10 qVs ve3,4—-6,7—9
11 pVr—qVs —i3—-10

1(n) We prove the validity of (pV (¢ — p)) AqF p by

1 (pV (g —p)) ANq premise

2 q Neg 1

3 pV (g —p) Nep 1

4 | p assumption

5 q—p assumption

6 P —e 9,2

7 p Ve 3,4—-4,5—6

Note that one could have put line 2 in between lines 5 and 6 with

8 Propositional logic

the corresponding renumbering of pointers. Would the proof above
still be valid if we used rules Aes and Ae; in the other ordering?
1(0). We prove the validity of p — ¢,7 = sFpAr — gA s by

1 p—q premise

2 r—Ss premise

3 pAT assumption
4 p Ne1 3

) q —el,4

6 T Nez 3

7 s —e 2,6

8 gNs AN D, T

9 pAT > gANs —i3—28

1(r). We prove the validity of p > g AT F (p = ¢) A(p — 7) by

1 p—=>qgAT premise

2 p assumption

3 gNT —e 1,2

4 q Ne1 3

5 p—q —i12—-4

6 p assumption

7 gAT —e 1,6

8 T Neg T

9 p—T —16 —8
10 =g ANp—71) AL59

The reader may wonder why two separate, although almost identical,
arguments have to be given. Our proof rules force this structure (=
assuming p twice) upon us. If we proved ¢ and r in the same box,
then we would be able to show p — g A r which is our premise and
not what we are after.

Propositional logic

1(v). We prove the validity of pV (p A ¢) - p by

B~ W N =

5

© 0 N S Otk W N -

—_
o]

pV(pAgq) premise
p assumption
pAgq assumption
P Nep 3
P Vel,2—-2,3—-4
1(x). We prove the validity of p — (¢V r),qg = s,r > sk p— s by
p— (gVr) premise
q—s premise
r—s premise
P assumption
qVvr —e 1,4
q assumption
s —e 2,6
T assumption
s —e 3,8
S Veb,6 —7,8—9
p—s —id4—10

—_
—_

10

Propositional logic

1(y). We prove the validity of (p Aq) V(pAT)FpA(qVT) by

1 (pAg)V(pAT) premise
2 pAq assumption
3 P Nep 2
4 q Neg 2
5 gV Vi 4
6 pA(gVr) A 3,5
7 pAT assumption
8 p Nep 7
9 r Nea 7
10 qVvr Vig 9
11 pA(gVrT) Al 8,10
12 pA(gVrT) Vel 2—6,7—11

2(a). We prove the validity of -p — —gF g — p by

(= R N L

-p — g premise

q assumption
——q —=i 2

——p MT 1,3

p ——e4
q—p —i2-5

2(b). We prove the validity of =p V =g F —=(p A ¢) by

© 0 N O Ot ks W N -

)
)

12

Propositional logic

11

-pV g premise

-p assumption
pAgq assumption
P Aei 3

1 —e 4,2
-(pAg) -13-5

-q assumption
pAgq assumption
q Neg 8

L —-e9,7
-(pAgq) —-18-10
-(pAq) Vel,2—-6,7—11

2(c). We prove the validity of —p,pV ¢ ¢ by

N =S S NG JU NP

—p premise

pVq premise

P assumption

1 —e 3,1

q led

q assumption |
q

Ve?2,3—56—6

12 Propositional logic

2(d). We prove the validity of pV ¢,~qVrF pVr by

1 pVgq premise
2 gV r premise
3 -q assumption
4 pVgq copyl
5 p assumption
6 pVvr Vi h
7 q assumption
8 L -e 7,3
9 pvr le8
10 pVvr Ve4,5—6,7—9
11 T assumption
12 pVr Vigll
13 pVr Ve2,3-—10,11 —12

Observe how the format of the proof rule Ve forces us to use the copy
rule if we nest two disjunctions as premises we want to eliminate.
2(e). We prove the validity of p — (¢ V), g, —r F —p by

1 p— (qVr) premise

2 —q premise

3 -r premise

4 p assumption
) qVvr —e 1,4

6 q assumption
7 L —e 6,2

8 r assumption
9 L —-e 8,3

10 L Ve b, 6 —7,8—9

—-i4—10

—_
—_
d

=

2(f). We prove the validity of -p A =g F =(p V q) by

© 00 N O Ot ke W N =

10

2(g). We prove the validity of p A =p = =(r — ¢) A (r — q) by

1
2
3
4

5

Propositional logic

-p A —-q premise

pVyq assumption

P assumption

—p Nep 1

1 —e 3,4

q assumption

—q Neg 1

1 -e 6,7

L Ve2,3—-5,6—38

=(pVq)

pA—p
P

—p

1

—|(T —>q)/\

-i2—-9

premise
Nep 1
Neg 1
-e2,3
(r—q) Lled

2(i). We prove the validity of =(-pV ¢) F p by

Gt W N =

6

—(-pVq) premise

-p assumption
-pVgq Vip 2

1 -e J,1

——p —-i2—4

P ——e 5

13

Note that lines 5 and 6 could be compressed to one line with the

application of RAA.
3(d). We prove the validity of - -p — (p = (p — q)) by

14 Propositional logic

1 =p assumption
2 p assumption
3 P assumption
4 1L -e 3,1

5 q le4

6 p—q —id3—5

7 p— (p—q) —12—6

8 =P (P—gq) —il-T7

Note that all three assumptions/boxes are required by the format of
our —i rule.
3(n). We prove the validity of p A ¢ - =(=p V —¢q) by

1 pAgq assumption

2 -pV g assumption

3 -p assumption

4 p Nep 1

5 L —e 4,3

6 -q assumption

7 q Aeg 1

8 1 —-e 7,6

9 1 Ve 2,3 —5,6 -8

-i2—-9

—_
jen}

S
<
J

e

Propositional logic 15

3(q). We prove the validity of (p — q) V (¢ — r) by

© 00 N O Ot W N =

— =
N = O

13

qV —q lemma

q assumption

P assumption

q copy 2

p—q —i3d—4

(p—2>qVig—r) Vild

-q assumption

q assumption
-e 8,7

r le9

q—r —18—10

(p—=>qVig—r) Vigll

p—>q)V(g—r) Vel,2—6,7—12

5(a). We prove the validity of F ((p = q) — q) — ((¢ = p) = p) by

© 0 N O Ot xR W N =

[N T T
B W N = O

(p—q) —q assumption
q—p assumption
-p assumption
P assumption
L -e 4,3
leb
p—q —i4—6
—e 1,7
p —e 2,8
1L -e 9,3
——p -i3—10
P -—e 11
qg—p) —p —i2—-12

(
(p—=¢q)—q) = ((gop) —p —il—13

16 Propositional logic

Let us motivate some of this proof’s strategic choices. First, the
opening of assumption boxes in lines 1 and 2 has nothing to do with
strategy; it is simply dictated by the format of the formula we wish to
prove. The assumption of —p in line 3, however, is a strategic move
with the desire to derive L in order to get p in the end. Similarly,
the assumption of p in line 4 is such a strategic move which tries to
derive p — g which can be used to obtain 1.
5(d). We prove the validity of F (p — q) — ((-p — q) — q) by

1 p—q assumption
2 ap —q assumption
3 pV-p lemma
4 p assumption
) q —e 1,4
6 -p assumption
7 q —e 2,6
8 q Ved, 4—56—7
9 (-p—4q)—q —i2-38
10 p—qg) > ((p—=q) =g —i1-9

EXERCISES 1.3 (p.81)
1(b). The parse tree of p A q is

1(d). The parse tree of p A (—qg — —p) is

Propositional logic

&)

1(f). The parse tree of =((—=gA(p = 1)) A(r — q)) is

17

18 Propositional logic

iéé

2(a). The list of all subformulas of the formula p — (-pV (=—q — (pAq)))
is

Propositional logic 19
g
PAg
=g — (pAq)
“pV (==g = (pAq))
p— (mpV (=g = (pAQ))).
Note that —g and ——q are two different subformulas.

3(a). An example of a parse tree of a propositional logic formula which is
a negation of an implication:

3(c). An example of a parse tree of a formula which is a conjunction of

conjunctions is

20 Propositional logic

)
P
&

4(a). The parse tree of =(s — (=(p — (g V —s)))) is

Propositional logic

Its list of subformulas is

21

22 Propositional logic
-8
qV —s
p— (qV—s)

=(p — (g V—s))
s = (=(p— (gVs)))

—(s = (=(p = (g V —9))))-

5. The logical formula represented by the parse tree in Figure 1.22 is
=(=(pV (g A=p)) =).

7(a). The parse tree

does not correspond to a well-formed formula, but its extension

does.
7(b). The parse tree

Propositional logic

23

is inherently ill-formed; i.e. any extension thereof could not corre-

spond to a well-formed formula. (Why?)

EXERCISES 1.4 (p.82)

1. The truth table for —=p V ¢ is

and matches the one for p — g¢.
2(a). The complete truth table of the formula ((p — ¢) — p) — p is given

by

H -

plalp=a|p=a9 —=p|(lp—a —2p) —p]
T|T T T T
T|F F T T
FI|T T F T
FI|F T F T

Note that this formula is valid since it always evaluates to T.
2(c). The complete truth table for p vV (=(g A (r — q))) is

pla|r|r—=q|lgAN(r—=q) | ~(gA(r—=q) |pV(=(gA(r—q)))
T|T|T T T F T
T|T|F T T F T
T|F|T F F T T
FIT|T T T F F
T|F|F T F T T
F|T|F T T F F
FIF|T F F T T
F|F|F T F T T

3(a). The requested truth value of the formula in Figure 1.10 on page 44
computed in a bottom-up fashion:

24 Propositional logic

4(a). We compute the truth value of p — (=g V (¢ — p)) in a bottom-up
fashion on its parse tree:

Propositional logic 25

/@
o \f\

L d

4(b). Similarly, we compute the truth value of =((—gA(p — 7)) A (r — q))
in a bottom-up fashion on its parse tree:

26 Propositional logic

T
F
F T
F T T T
F T
q
T

5. The formula of the parse tree in Figure 1.10 on page 44 is not valid
since it already evaluates to F for any assigment in which p and ¢
evaluate to F. However, this formula is satisfiable: for example, if ¢
and p evaluate to T then ¢ — —p renders F and so the entire formula
evaluates to T.

Propositional logic 27
7(c). We prove

n-(n+1)-(2n+1)
6
for all natural numbers n > 1 by mathematical induction on n.

1. Base Case: If n = 1, then the lefthand side of (1.1) equals 12
which is 1; the righthand side equals 1- (1+1)-(2-14+1)/6 =
2-3/6 =1 as well. Thus, equation (1.1) holds for our base
case.

2. Inductive Step: Our induction hypothesis is that (1.1)
holds for n. Our task is to use that information to show
that (1.1) also holds for n + 1. The lefthand side for n + 1
equals 12422432 +...4+n?+ (n+1)? which, by our induction
hypothesis, equals

n-(n+1)-2n+1)
6
The righthand side of (1.1) for n + 1 equals

m+1)-(n+1)+1)-2(n+1)+1)
6
Thus, we are done if the expressions in (1.2) and (1.3) are
equal. Using our algebra skills acquired in high-school, we
see that both expressions equal

(n+1)-(2n? + Tn + 6)
6
7(d). We use mathematical induction to show that 2" > n + 12 for all
natural numbers n > 4. Before we do that we inspect whether we
could improve this statement somehow: if n = 1,2 or 3 then 2" is
smaller than n + 12; e.g. 23 = 8 is smaller than 3 + 12 = 15. Thus,
we can only hope to prove 2" > n + 12 for n > 4; there is no room
for improvement.
1. Base Case: Our base case lets n be 4. Then 2" = 2* = 16
is greater or equal to 4 + 12 = 16.
2. Inductive Step: We need to show that 2! > (n+1) + 12,
where our induction hypothesis assumes that 2™ > n + 12.
Thus,

2n—|—1

124+22 43824+ +n?=

(1.1)

+ (n+1)% (1.2)

(1.3)

. (1.4)

= 2.2"
> 2-(n+12) by our induction hypothesis

28 Propositional logic

= [(n+1)+12] + (n + 11)
> (n+1)+12
guarantees that our claim holds for n + 1. Note that the first

step of this computation also uses that multiplication with a
positive number is monotone: x > y implies 2 -z > 2 - y.

8. The Fibonacci numbers are defined by

def

IR
F, &1
Fow & F,+F,, foraln>2. (1.5)

We use mathematical induction to prove that F3, is even for all
n > 1.
1. Base Case: For n = 1, we compute F35.; = F3 = F», + F}
by (1.5), but the latter is just 1 + 1 = 2 which is even.
2. Inductive Step: Our induction hypothesis assumes that
F3p, be even. We need to show that F3. ;1) is even as well.
This is a bit tricky as we have to decide on where to apply
the inductive definition of (1.5):

F3-(n+1) = Fiuys
= F (3n+2)+1

Fynio+ Fanyg) 1 by (1.5)
= Fant1)+1 + Fantr

(F3p+1 + Fspn) + Fp1 unfolding Fi3,41)41 with (1.5)

= 2-Fspp1 + Fap.

Since Fj, is assumed to be even and since 2 - F3, 1 clearly is
even, we conclude that 2- Fy, 1 + F3,, and therefore F3,(n +1)5
is even as well.
Note that it was crucial not to unfold Fj, 1 as well; otherwise,
we would obtain four summands but no inductive argument.
(Why?)

10. Consider the assertion
“The number n? + 5n + 1 is even for allmn > 1.7

(a) We prove the inductive step of that assertion as follows: we

Propositional logic 29

simply assume that n? + 5n + 1 is even and we need to show that
(n+1)2 +5(n+1) +1 is then even as well. But

(n+1)2+5n+1)+1 = ?>+2n+1)+GBn+5)+1
= (n*+5n+1)+ (2n+6)

must be even since

— n? 4+ 5n +1 is assumed to be even,
— 2n+6 =2-(n+3) is always even,
— and the sum of two even numbers is even again.

(b) However, the Base Case fails to hold for this assertion since n? +
fn+1=1"+5-1+1=14+5+1="Tisodd ifn=1.

(c) Thus, the assertion is false, for it is simply not true for n = 1.

(d) We use mathematical induction to show that n? + 5n + 1 is odd
for all n > 1.

1. Base Case: If n = 1, then we have already computed that
n?+5n+1=7is odd.

2. Inductive Step: Our induction hypothesis assumes
that n? 4+ 5n + 1 is odd. Above we already computed

(n+1)2+5(n+1)+1=n>*+5n+1)+ (2n+6) (1.6)

(this computation involves only high-school algebra and has
nothing to do with possible induction hypotheses). Thus,

(n+1)?+5(n+1)+1

must be odd, for

— n? +5n+ 1 is assumed to be odd,
— 2n + 6 is always even,
— and the sum of an odd and an even number is odd.

12(c). We prove that the sequent p — (¢ — r) F p — (r — ¢) is not valid.
Using soundness of our natural deduction calculus with respect to
the truth-table semantics, it suffices to find an assignment of truth
values to p, ¢ and r such that p — (¢ — r) evaluates to T, but
p — (r — q) evaluates to F. The latter can only occur if p = T and
g—>7r=F. Sop=¢q=Tandr =F is the only choice which can
defeat the claimed validity of this sequent. However, for this choice
we easily compute that p — (¢ — r) evaluates to T as this amounts
to T — (F — T) which computes to T.

30 Propositional logic

13(a) Let p denote “France is a country.” and ¢ denote “France won the
Euro 2004 Soccer Championships.” Then p V ¢ holds in the world
we currently live in, but p A ¢ does not.

13(b) Here one can choose for p and g the same meaning as in item 13(a):
-p — —¢g holds as p is true, but -¢ — —p is false as —q is true
whereas —p is false.

17(b) This formula is indeed valid. To make it evaluate to F we need that
both disjuncts evaluate, in particular - — p, have to evaluate to F.
This p needs to evaluate to F and —(p — ¢) needs to evaluate to T.
But the latter contradicts that p is F.

EXERCISES 1.5 (p.87)

2(a) (Bonus) We have ¢V (mpVr)=-pV(gVr)=p— (gVr)since V is
associative and implication can be decomposed in this way. Since
= is transitive, we conclude that ¢V (-pVr)=p— (g Vr).

(b) g A —r — p is not equivalent to p — ¢V r since gA—-r —>pHFp —
(qVr): for let ¢ and r be F and p be T. Then g A—r — p computes
T, whereas p — ¢ V r computes F.

(c) (Bonus) We have pA -1 = qg=—-(pA-r)Vg=(-pV-r)Vg=
gV (-p V r) which is the formula in (a). Thus, p A - r — ¢ is
equivalent to p — ¢ V r. Note that this made use of the identity
=(¢pA1p) = —¢V —1p which is shown in item 10(a) of Exercises 1.13.

(d) We have ~g A =r — —p = =(-g A -r)V —-p = (0qV —r) V
—-p =¢qV (-pVr)and, as in the previous item, we conclude that
—g A —r — —p is equivalent to p = g V r.

6(d)i. To show ¢ A (¢ V7)) = ¢, we need to show ¢ A (¢ V1n) E ¢ and
d E dA(pVn). Tosee pA(PVn) E ¢, assume that A (HVn) evaluates
to T. Then ¢ has to evaluate to T as well. To see ¢ E ¢ A (¢ V 1),
assume that ¢ evaluates to T. Then ¢ V n evaluates to T as well.
Thus, ¢ A (¢ V n) evaluates to T, too.
6(e)ii. To show ¢V (Y An) E (¢ V) A (¢ Vn), assume that ¢ V (¢ A n)
evaluates to T.
Case 1: Suppose that ¢ evaluates to T. Then ¢ V ¥ and ¢ V 1 evaluate to
T. Therefore, (¢ V) A (¢ V n) evaluates to T as well.
Case 2: Suppose that ¥ An evaluates to T. Then both % and 7 evaluate to
T. Thus, ¢V and ¢V 7 evaluate to T. Therefore, (¢pV) A(pVn)
evaluates to T.

Propositional logic 31

Note that these two cases are exhaustive. (Why?)

To show (VYY) A(pVn) E PV (1 An), assume that (¢V) A(dVn)
evaluates to T. Then ¢ V 9 and v V 7 evaluate to T.

Case 1: Suppose that ¢ evaluates to F. Then we conclude that ¢ and n
have to evaluate to T. Thus, 1) A n evaluates to T. Therefore,
¢V (1 An) evaluates to T.

Case 2: Suppose that ¢ evaluates to T. Then ¢ V () A7) evaluates to T as
well.

6(g)ii. To show —(¢ V1) E =¢p A =1p, assume that (¢ V) evaluates to T.
Then ¢ V 9 evaluates to F. Thus, ¢ and v evaluate to F. So —¢ and
—1) evaluate to T. Therefore, -¢ A =) evaluates to T as well.
To show —¢p A —p E —=(¢ V 1), assume that —¢ A —1) evaluates to T.
Then —¢ and — evaluate to T. Thus, ¢ and 1 evaluate to F. This
entails that ¢V 1 evaluate to F. Therefore, —(¢ V 1)) evaluates to T.

7(a). The formula ¢ in CNF which we construct from the truth table

q
T
T
F
F

e I B |
= = =

is

(=pV-g)A(pV—q)A(=pVa).
Note how these principal conjuncts correspond to the lines in the
table above, where the ¢; entry is F: e.g. the third line T | F | F

results in the conjunct (—pV ¢q).
7(b). The formula ¢2 in CNF based on the truth table

T TR I R Y RS
T I I T R |
T IS R I R I
*q»—l'n»—l-n'-q*zj»—]‘[?

32

Propositional logic
is
(mpV=gVT)A(—pVqV-T)AN(—pVgVT)AN(PpV—-gVT)AN(PVqVT).

Incidentally, if you are not sure about whether your answer is correct
you can also try to verify it by ensuring that your answer has the
same truth table as the above.

8. We write pseudo-code for a recursive function IMPL_FREE which expects

a (parse tree of a) propositional formula as input and produces an
equivalent formula as output such that the result contains no impli-
cations. Since our logic has five data constructors (= five ways of
building a formula), namely atoms, negation, conjunction, disjunc-
tion, and implication, we have to consider five cases. Only in the case
of implication do we have to do work beyond mere book-keeping:

function IMPL_FREE ((]5) :
/* computes a formula without implication equivalent to ¢ */
begin function
case
¢ is an atom: return ¢
¢ is =¢1: return —IMPL FREE (¢1)
¢ is 1 A ¢y: return IMPL_FREE (¢) A IMPL_FREE (¢b;)
¢ is ¢1 V ¢o: return IMPL_FREE (¢;) V IMPL_FREE (¢2)
¢ is ¢p1 — ¢9: return IMPL FREE (—¢1 V)
end case
end function

There are quite a few other solutions possible. For example, we could
have optimized this code in the last case by saying

return —(IMPL_FREE ¢;) V (IMPL _FREE ¢,)

which would save us a couple of computation steps. Furthermore, it
is possible to overlap the patterns of the first two cases by returning
¢ if ¢ is a literal in the first clause. Notice how the two clauses
agree in this case. Such a programming style, while correct, it not
recommended as it makes it harder to read somebody else’s code.

9. We use our algorithm IMPL_FREE together with the functions NNF and

CNF to compute CNF(NNF(IMPL_FREE ¢)), where ¢ is the formula

Propositional logic 33

=(p = (=(gA(=p — ¢q)))). In the solution below we skipped some of
the obvious and tedious intermediate computation steps. Removing
all implications results in:

IMPL FREE ¢ = —IMPL_FREE (p — (=(¢A (=p — q))))
= —(-pV IMPLFREE (—(g A (-p — q))))
= —(=pV —(g A IMPL_FREE (—p — q)))
= —(-pV-(gA(—pVq)))

Computing the corresponding negation normalform yields:

NNF=(=pV =(¢g A (==pV @) = (NNF-—p)A(NNF-=(gA(-pVq)))
= (NNFp) A (NNF (g A (=—p V q)))
p A (g A (NNF (==pV q)))
= pA(gA ((NNF-—p)V (NNF g)))

pA(gN(pVa)
= pAgA(pVyq)

which is already in conjunctive normalform so we won’t have to call
CNF anymore. Notice that this formula is equivalent to the CNF

PAg.

15(a) The marking algorithm first marks r, g, and u through clauses of the
form T — -. Then it marks p through clause r — p and s through
clause © — s. The w never gets marked and so p A ¢ A w can never
trigger a marking for 1. Thus the algorithm determines that the
formula is satisfiable.

15(g). Applying the marking algorithm to (T — ¢) A (T — s) A (w —
DApPAgAs = L)A(v—=8)A(T = r)A(r — p), it marks g, s,
and 7 in the first iteration of the while-loop. In the second iteration,
p gets marked and in the third iteration an inconsistency is found:
(p AgAs— 1) is a subformula of the original formula and p, ¢, s
are all marked. Thus, the Horn formula is not satisfiable.

17. (Bonus) Note that Horn formulas are already of the form 1; Ao A. .. A
m, where each ; is of the form p; Aps A... Ap;, — ¢;. We know
that the latter formula is equivalent to ~(p1 Apa A... Ap;,) V g, L.e.
it is equivalent to —p1 V —pa V...V =p;, V ¢;. Thus, we may convert
any Horn formula into a CNF where each conjuction clause has at

34 Propositional logic

most one positive literal in it. Note that this also covers some special
cases suchas T - g=-TVg=1lVg=gq.

EXERCISES 1.6 (p.90)

2. We illustrate the arguments for some of these rules.

e For example, if a A-node has to evaluate to T in order for the
overall formula to be satisfiable, then both its arguments have to
evaluate to T in order for the overall formula to be satisfiable.

e If both arguments have to evaluate to T in order for the overall
formula to be satisfiable, then the A-node needs to evaluate to T
as well for the overall formula to be satisfiable.

e If we know that the overall formula can only be satisfiable if an
A-node evaluates to F and one of its arguments evaluates to T,
then we know that the overall formula can only be satisfiable if all
this is true and the other argument evaluates to F.

o Etc.

4. There are many equivalent DAGs one could construct for this. We chose
as a formula —~((p V q) A (p = r) — r) which can be translated
as =(=p A —q) A (=(p A =r) A —=r) into the SAT solver’s adequate
fragment. One can then draw the corresponding DAG and will see
that the linear SAT solver computes a satisfiablity witness for which
p and r evaluate to F and ¢ evaluates to T.

11. A semi-formal argument could go like this: the linear solver will com-
pute all constraints it can infer from the current permanent markings
so the order of evaluation won’t matter for it as all constraints will
be found and so it will always detect a contradiction if present. The
cubic solver may test nodes in a different order but if any test cre-
ates a new permanent constraint, the cubic solver will test again
all unconstrained notes so the set of constraints can only increase.
Moreover, a contradiction found by testing in some order will also
be found by testing in some other order as the eventual discovery of
constraints is independent of the order of tests by the argument just
made.

2

Predicate logic

EXERCISES 2.1

1. (a) Vo(P

p.157)

) = (3y(L(y)A—B(z,y)))), or, equivalently, =3z (S(z)A

L(y) = B(z,))).

L(z) — Jy(S(y) A ~B(y,x))), or, equivalently,

y) ANVz(S(z) = B(z,y))).

(f) Vz(L(z) — Vy(S(y) = —B(y, z))), or, equivalently, VzVy(L(z)A
S(y) = —B(y,z)).
3. (a) Vz(Red(z) — Inbox(z))
(b) Vz(Inbox(z) — Red(z))

(c) Vz(Animal(z) — (—Cat(z)V—Dog(z))), or, equivalently, -3z (Animal(z)A
Cat(x) A Dog(z)).

(d) Vz(Prize(z) — Jy(Boy(y) A (Win(y,z))))

(e) Jy(Boy(y) A Vx(Prize(x) — Win(y,z))) Note carefully the
difference between (d) and (e), which look so similar when
expressed in natural language. Item (d) says that every prize
was won by a boy, possibly a different one for each prize. But
item (e) says it is the same boy that won all the prizes.

EXERCISES 2.2 (p.158)

1(a)ii. The string f(z,g(y, z),d) is not a term since f requires two argu-
ments, not three. Likewise, g requires three arguments, not two.
1(a)iii. +/
1(c). 1. There is only one term of height 1 (without variables); it is
simply d.

35

36

Predicate logic

2. There are two terms of height 2, namely f(d, d) and g(d, d, d).
3. There are quite a few terms of height 3: the root node has

to be f or g. Depending on that choice, we have 2 or 3
arguments. Since the overall term has to have height 3 it
follows that at least one of these arguments has to be a term
of height 2. Thus, we may list all these terms systematically:

fd, f(d,d))

(d,d),d)

(d,d,d),d)

,9(d, d,d))

(d,d), f(d,d))

(d,d,d),g(d,d,d))

(d,d),g(d,d,d))

flg(d,d,d), f(d,d))

are all the terms with f as a root. The terms with g as a root
are of the form g(#1, #2, #3), where at least one of the three
arguments has height 2. Thus, g(d,d,d) is not allowed, but
other than that each argument can be d, f(d,d), or g(d, d, d).
This gives us 3-3-3 —1 = 26 different terms of height 3. The
first ten are

g(d,d, g(d,d,d))

f(f
flg
f(d
f(f
flg
f(f

d,d,d), f(d,d))
d,d,d), g(d,d,d))

and you are welcome to write down the remaining 16 terms if

you wish. In conclusion, there are 1+ 2+ 8+ 26 = 37 different
terms already of height less than 4.

v
v

x; f(m) denotes a term, not a formula.

e 6 o o & o o o o o
/\/\/‘\/‘\/‘\/\/\/\/\

&
E\/\

X; in predicate logic, we can’t nest predicates: the missing
argument in B(7,y) has to be a term, but B(m,z) is a for-
mula.

Predicate logic

(v) x; again, we can’t nest predicates (B, S are predicates).
(vi) v
(vii) v/
(viii) x; again, we can’t nest predicates.
4(a). The parsetree is

37

38

free

Predicate logic

free

\ bound free

bound bound

Predicate logic 39

4(b). From the parsetree of the previous item we see that all occurrences of
z are free, all occurrences of z are bound, and the leftmost occurrence
of y is free, whereas the other two occurrences of y are bound.

4(d).(i) — ¢[w/z] is simply ¢ again since there are no free occurrences of

z in ¢ that could be replaced by w;

— ¢lw/y] is Fz(P(w, z) AVy(-Q(y,z) V P(y, z))) since we replace
the sole free occurrence of y with w;

— ¢lf(z)/y] is 3z(P(f(z),2) A Vy(=Q(y,z) V P(y,z))) since we
replace the sole free occurrence of y with f(z);

— 9lg(y, 2) /2] Fx(P(y, 9(y, 2)) AVy(=Q(y,z) V P(y, g(y, 2)))) since
we replace all (free) occurrences of z with g(y, z).

(ii) All of them, for there are no free occurrences of z in ¢ to begin
with.

(iii) The terms w and g¢(y, z) are free for y in ¢, since the sole free
occurrence of ¢ only has Jx as a quantifier above it. For that very
reason, f(x) is not free for y in ¢, since the z in f(z) would be
captured by Jz in that substitution process.

4(f). Now, the scope of Iz is only the formula P(y,z), since the inner
quantifier Vz binds the z (and overrides the binding of 3z in the
formula -Q(z,z) V P(z, z)).

EXERCISES 2.3 (p.160)

3(a). A formula ¢_3 whose models are exactly those which have three
distinct elements is

Jz 3y 3z (((~(z = y) A =(z = 2)) A =(y = 2))
AVw ((w =z) V(w=1y)) V(v = z))).
3(c). As in item 3 above, we may generally construct formulas ¢—, for
each n = 1,2,3,... such that the models of ¢_,, are exactly those

with n distinct elements. Then a model is finite iff it satisfies ¢_j,
for some n > 1. Therefore,
\/ é=n

n>1

would do the trick, but, alas, this conjunction is infinite and not
part of the syntax of predicate logic.

40 Predicate logic
7(a). We prove the validity of VzVyP(z,y) F Yu Vv P(u,v) by

1 VaVyP(z,y) assum

2 g

3 Yo

4 Yy P(xo,y) Vzel

5 P(zo,yo) Vye4

6 Vv P(zg,v) Yvid—5
7 YuVv P(u,v) Yui2—6

7(c). We prove the validity of 3z Vy P(z,y) - Vy 3z P(z,y) by

dzVy P(z,y) assum

Yo

Zo
Yy P(z9,y) assum
P(z0,0) Vye 4
dz P(x,yo) dzib
dzP(x,yo) Jzrel,3—6
8 Vy 3z P(z,y) Vyi2—-T7

Note that we have to open a yg-box first, since we mean to show a

N O Ot o W N -

formula of the form Vy 1. Then we could open an zy-box to use Iz e.
9(a). We prove the validity of 3z (S — Q(z)) - S — Jz Q(z) by

1 dz (S = Q(z)) prem

2 S assum

3 o

4 S — Q(zp) assum

5 Q(zo) —ed,?2

6 Jdz Q(z) dzib

7 Jz Q(x) Jzre1,3—6
8 S—3JxQx) —i2-T7

Predicate logic

9(d). We prove the validity of Vz P(z) — S+ 3z (P(z) — S) by

1 Vz P(z) — S prem

2 -3z (P(z) - S) assum

3 T

4 —P(zg) assum

5 P(xp) assum

6 €L —e 5,4

7 S le6

8 P(xzy) —» S —i5-7

9 dz (P(z) — S) dzi8
10 1 —e 9,2
11 —~—P(0) -i4-10
12 P(z) ——e 11
13 Vz P(z) Vzi3d—12
14 S Sel,13
15 P(t) assum
16 S copy 14
17 P(t)— S —115-16
18 dz (P(z) — S) dzil7
19 L —e 18,2
20 —-—3dz (P(z) —» S) -i2-19

[Nl
—_

dz (P(z) — S) ——e 20

42 Predicate logic
9(k). We prove the validity of Vz (P(z) A Q(z)) F Vx P(z) AVz Q(z) by

1 Vz (P(z) A Q(xz)) prem
2 g
3 P(z0) N Q(z0) Vzel
4 P(x) Aep 3
5 Vz P(z) Vxi2—4
6 o
7 P(zo) N Q(xp) Vzel
8 Q(xo) Ney T
9 Vz Q(z) Vzi6—8
10 Vz P(z) AVzQ(z) Aib,9
9(1). We prove the validity of Vz P(z) VVz Q(z) F Vz (P(z) V Q(z)) by
1 Vz P(z) VVz Q(z) prem
2 g
3 Vz P(z) assum ||Vz Q(x) assum
4 P(x0) Vze 3 ||Q(zo) Vze3
5 P(zo) V Q(zo) Vip 4 ||P(zg) VQ(zo) Vig4
6 P(z0) V Q(x0) Vel,3-5,3-5
7 Vz (P(z) V Q(x)) Vzi2—6

9(m). We prove the validity of 3z (P(z) A Q(z)) F 3z P(z) A 3z Q(x) by

1 Jdz (P(z) AQ(z)) prem

2 To

3 P(xo) N Q(xo) assum

4 P(zp) Ner 3

5 dz P(z) dzid

6 Q(xo) Ney 3

7 Jdz Q(x) Jzi6

8 Jz P(x) Az Q(z) Aib,7

9 dz P(x) A3z Q(xz) Jzel,2—8

Predicate logic

43

9(n). We prove the validity of 3z F(x) V 3z G(x) F Iz (F(x) V G(z)) by

1
2
3
4
)
6
7

8

dz F(z) V 3z G(x) prem
dz F(x) assum dz G(z) assum
Zo To
F(xg) assum G(zo) assum
F(xo) V G(xp) Vi 4 F(xy) V Vig 4
dz (F(z) vV G(z)) 3zib dz (F(x) dzrib
dz (F(z) VG(z)) Jze2,3—6 dz (F(z) dze2,3—6
dz (F(z) V G(x)) Ve l,2—7,2-7

9(p). We prove the validity of -Vz—P(z) - 3zP(z) by

© 00 N O Ot kW N

10

-Vz—-P(z) prem
—dz P(x) assum

Zo
P(xp) assum
Jdz P(z) Jzi4d
1 —e b,2
= P(z) —-14—6
Ve—-P(z) Vxi3-T7
1 -e 8,1
JwP(z) RAA2-9

9(q). We prove the validity of Vz —=P(z) - -3z P(z) by

1
2
3
4
)
6
7
8

Vz—-P(z) prem
Jz P(x) assum
o
P(xg) assum
-P(zg) Vzel
L —-e4,5
L Jze2,3-6

-3z P(z)

—i2-7

44

Predicate logic

9(r). We prove the validity of =3z P(z) - Vx —P(z) by

S Ot W N =

7

—3Jz P(z) prem

o
P(z) assum
Jz P(z) Jzi3
1 -e 4,1
-P(zy) -i3-5

Ve -P(z) Vzi2—6

Note that we mean to show Vz—P(z), so the zy-box has to show the

instance P (zg) which is achieved via a proof by contradiction.
11(a). We prove the validity of P(b) F Vz ((z = b) — P(z)) by

Tt W N =

6

P(b) prem
T

To=0b assum

P(z) =e 3,1

(g = b) = P(z) —i3—4

Vz ((x =b) — P(z)) Vri2-5

11(c). We prove the validity of 3x3Iy(H (z,y) V H(y,z)),~JzH(z,x) F

Predicate logic

Jz3y—(z =y) by

1 dr Iy (H(z,y) V H(y,z)) prem
2 —3dz H(z,x) prem
3 T,
4 Jy (H(zo,y) V H(y,z9)) assum
) Yo
6 H(zo,y0) V H(yo, o) assum
7 To = 1Yo assum
8 H(zo,y0) assum
9 H (yo,v0) =e7,8
10 dr H(z,x) dzi9
11 L —e 10,2
12 H (yo,xo) assum
13 H (yo,v0) =e 7,12
14 dr H(z,x) Jzil3
15 L —e 14,2
16 1 Ve 6,8—11,12—-15
17 —(zo = yo) -1 7-16
18 Jy—(zo =y) Jyil7
19 dz Iy -(z =y) Jzil8
20 Jz Iy —(z =vy) Jye4,5—19
21 Jz Iy —(z =vy) Jzel,3—-20

46 Predicate logic
12. We prove the validity of S — Vz Q(z) F Vz (S — Q(x)) by

1 S —VrQ(z) prem

2 o

3 S assum

4 Vz Q(z) —e 1,3

5 Q(zp) Vzed

6 S = Q(zo) —i13-5
7 Ve (S = Q(z)) Vri2—6

13(a). We show the validity of
Vz P(a, z,2), Ve VyVz (P(z,y,2) = P(f(2),y, f(2))) F P(f(a),a, f(a))

by

1 Vz P(a,z,x) prem
2 VzVyVz (P(z,y,2) = P(f(2),y, f(2))) prem
3 P(a,a,a) Vzel
4 VyVz(P(a,y,z) = P(f(a),y, f(2))) Vze2
5 Vz (P(a,a,z) = P(f(a),a, f(2))) Vye 4
6 P(a,a,a) = P(f(a),a, f(a)) Vzeb
7 P(f(a),a, f(a)) —e 6,3

13(b). We show the validity of
VzP(a, 7,),V VyVz (P(z,y,2) = P(f(z),y, f(2))) F 32 P(f(a), 2, f(f(a)))

by

1 VzP(a,z,x) prem
2 Ve VyVz (P(x,y,z) = P(f(x),y, f(2))) prem
3 P(a, f(a), f(a)) Vzel
4 YyVz (P(a,y,z) — P(f(a),y, f(2))) Vze2
5 Vz(P(a, f(a),2) = P(f(a), f(a), f(2))) Vye4
6 Pla, f(a), f(a)) = P(f(a), f(a), f(f(a)) Vzed
7 P(f(a), f(a), f(f(a))) —e6,3
8 3z P(f(a), z, f(f(a))) Izi 7

Predicate logic 47

Note that we just had to add one more line to the proof of the
previous item and instantiate z, y and z with f(a) instead of a in
lines 3, 4 and 5, respectively.

13(c). We prove the validity of

Vy Q(b,y), Ve vy (Q(z,y) = Q(s(2), s(y))) F 32 (Q(b, 2)AQ(2, 5(s(D)))

by
1 Yy Q(b,y) prem
2 Va vy (Q(z,y) — Q(s(z),5(y))) prem
3 Vy (Q(b,y) — Q(s(b),5(y))) Vze 2
4 Q(b,s(b)) — Q(s(b),s(s(b))) Vye3
o Q(b, s(b)) Vzel
6 Q(s(b), s(s(b))) —ed,5
7 Q(b,s(b)) A Q(s(b), s(s(b)) AL 5,6
8 3z (Q(b, 2) A Q(2,5(s(D))) Izi7

EXERCISES 2.4 (p.163)

1. The truth value of Vx Vy Q(g9(z,vy),9(y,y), z) depends only on the values
that valuations assign to its free variables, i.e to the occurrence of
z. We choose A to be the set of integers, g™ (a,a’) is the result of
subtracting a/ from a, and a triple of integers (a,b,c) is in QM if,
and only if, ¢ equals the product of @ and b. That way g(y,y) is
interpreted as 0 and, consequently, our formula says that 0 equals
the value assigned to z by our valuation. So for I(z) £ 0 the formula
holds in our model, whereas for I'(z) % 1 it is false.

5(a). The formula VzVy3z (R(z,y) — R(y,z)) is not true in the model
M: for example, we have (b,a) € RM, but there is no m € A with
(a,m) € RM contrary to what the formula claims. Thus, we may
“defeat” this formula by choosing b for and a for y to construct a
counter-witness to the truth of this formula over the given model.

5(b). The formula VzVy 3z (R(z,y) — R(y,z)) is true in the model M':
we may list all elements of R in a “cyclic” way as (a,b) (b,c) (c,b),
the cycle being the last two pairs. Thus, for any choice of z and y
we can find some z so that the implication R(z,y) — R(y, z) is true.

6. o We choose a model with A being the set of integers. We define (n, m) €
PM if, and only if, n is less than or equal to m (n < m). Evidently,

48 Predicate logic

this interpretation of P is reflexive (every integer is less than or
equal to itself) and transitive: n < m and m < k imply n < k.
However, 2 < 3 and 3 £ 2 show that this interpretation cannot be
symmetric.

e We choose as set A the sons of J. S. Bach. We interpret P(z,y)
as “z is a brother of y”. Clearly, this relation is transitive and
symmetric, but not reflexive.

o We define A & {a,b,c} and
PM < {(a,a),(b,b), (c,c), (a,c), (a,b), (b,a), (c,a)}.

Note that this interpretation is reflexive and symmetric. We also
have that (b, a) and (a, c) are in PM. Thus, we would need (b, c) €
PM to secure transitivity of PM. Since this is not the case, we
infer that this interpretation of P is not transitive.

8. To show the semantic entailment Vz P(z) V Vz Q(z) F Vz (P(z) V Q(z))
let M be any model such that M E Vz P(z) VVz Q(z). Then M E
Vz P(z) or M E Vz Q(z). Thus, either all elements of A are in PM,
or they are all in Q™. In any case, every element of A is in the union
PM U QM. Therefore, M EVz (P(z) V Q(x)) follows.

9(b). To see that ¢ An E 1 does not imply ¢ F 1 and n F 1 in general
consider the special case where 1 is just ¢ again. Then ¢ An F ¢
and ¢ F ¢ are clearly the case, but we cannot guarantee that n F ¢
holds as well. For example, we could pick 1 to be 3z P(z) and ¢ to
be Vz P(z).

11(b). The collection of formulas Yz =S(z, z), Vz Iy S(z,y), Yz VyVz ((S(z, y)A
S(y,z)) = S(z, z)) says that the interpretation of S is irreflexive, se-
rial (see Chapter 5), and transitive. There are plenty of such relations
around. For example, consider S(z,y) to be interpreted over the nat-
ural numbers as meaning “z is strictly less than y” (z < y). Clearly,
this is irreflexive and transitive. It is also serial since n < n + 1 for
all natural numbers n.

11(d). The collection of formulas 3z S(z,z), VzVy (S(z,y) — (z = y))
says that S should be interpreted as equality and that at least one
element is equal to itself. But since the interpretation of equality over
any model is reflexive ((a,a) € =™ for all a € A) this is true for all
models which interpret equality in the standard way (and where A
is non-empty, which we assumed in our definition of models).

12(b) This is valid. To prove it, use Jyi with dummy variable g, at the
toplevel and within its box use —1i to show (VzP(z)) — P(yo) and
then close the Jyi box to conclude the desired formula.

Predicate logic 49

12(g) This formula claims that any relation that is serial and anti-symmetric
has no minimal element. Let the model be the set of natural num-
bers with where S is interpreted as “less than or equal.” Then this
relation is serial and anti-symmetric but 0 is a minimal element. So
this formula is not valid.

EXERCISES 2.5 (p.164)
1(b). We interpret the sequent
Vz(P(z) = R(z)),Vz(Q(z) — R(z)) F Iz (P(z) A Q(z))

by
P(xz) : “zisacat.”
Q(z) : “zisadog”
R(z) : “zisan animal.”

Then Vz(P(z) — R(z)) and Vz(Q(z) — R(z)) are obviously true,
but 3z(P(z) A Q(x)) is false, despite recent efforts in microbiology.

1(d). We interpret the sequent Vz3yS(z,y) - JyVzS(z,y) over the integers
by

S(z,y) : “yequals?2-z.”

Clearly, every z has a y, namely 2 - z, such that S(z,y) holds. But
there is no integer y which equals 2 - = for all choices of x.

1(f). For the sequent 3z (~P(z) A Q(z)) F Vz (P(z) — Q(z)) no proof is
possible since we can interpret P and @) over the integers such that
P(z) is saying “z is odd” and Q(z) is saying that “z is even”. In
this model we have M F 3z (-P(z) A Q(x)), e.g. take 2 as a value
of z, but we cannot have M F Vz (P(z) — Q(z)) since not all odd
numbers are even (in fact, none of them are!).

1(g). For the sequent 3z (=P (z) V =Q(z)) F Vz (P(x) V Q(x)) no proof is
possible since we may interpret P and) over the same domain of
integers, but now P(z) says that “x is divisible by 2”7, whereas Q(z)
says that “z is divisible by 3”. Then we have M’ E 3z (-P(z) V
=Q(z)) for this model, e.g. take 9 as the value of z; however, we
cannot have M’ E Vz (P(z)VQ(z)) since not all integers are divisible
by 2 or 3 (e.g. choose = to be 13).

50 Predicate logic
EXERCISES 2.6 (p.165)

1(a) The formula 3P¢ was meant to be the one that specifies unreacha-
bility. Therefore, this does not hold here as s; is reachable from s3
through the path s3 — sg — s1.

4. There are infinitely many such paths (you are welcome to think about
the degree of infinity here). For example, we can travel from s3 to
sp and then cycle between s; and sy for any finite number of times
before we travel from s; to so.

5(a) We can specify such a formula by IP(VaVy(P(z,y) — R(z,y))) A
(VaP(z,z)) A (VaVy(P(z,y) = Py, z))).

5(e) We specify this by saying there is some P which contains exactly all
pairs that have a directed R-path of length 2 and that is transitive.
So this may read as IP(VzVy(P(z,y) < Jz(R(z,z) A R(z,y)))) A
(VzVyVz(P(z,y) A P(y,z) = P(z, z))).

6. We use an instance of the law of the excluded middle. Either A is in
A or it isn’t. If A is in A, then by definition of A it is not in A,
contradiction. If A is not in A, then by definition of A it is actually
of member of A, a contradiction. So no matter what case, we derive
a contradiction.

8(a) This formula claims that there is a binary relation P with the property
that any P-edge excludes its reverse P-edge and that any R-edge has
a reverse P-edge. This cannot be in the given model. For example,
there are R-edges from s1 to sg and vice versa so they would imply P-
edges from sg to s1 and vice versa, respectively. But this contradicts
the requirement on P-edges, namely that a P-edge from sy to s1
excludes the possibility of a P-edge from s; to sp.

9(b) We can achieve this by using universal second-order logic to quantify
over all transitive relations that contain R and to then make the de-
sired statement about all such transitive relations: VP (VaVy(R(z,y) —
P(z,y))) N (VzVyVz(P(z,y) A P(y,z) = P(z,2))) = (VzP(z,x)).

9(e) The equivalence relation that identifies no two distinct elements is
maximal in this sense and so VazVyR(z,y) <> (z = y) is a correct
encoding in predicate logic.

EXERCISES 2.7 (p.166)

1(a) Both Person_1 and Person_2 are members of cast, but Person_2
loves Person 0 which is alma and the Person 1 loves alma and
Person_2. Therefore this is a counterexample to 0fLovers as no
person in this graph loves him or herself.

Predicate logic 51

1(c). A model with only two persons is such that one of them has to be
alma and then the other person has to love alma. But the only way to
then get a counterexample is to then have another love relationship
which, necessarily, has to involve self-love.

2(b) fun SevenNodesEachHavingFiveReachableNodes(G : Graph) {

with G {

nodes = 7

all n : nodes | # n."edges = 5
}

} run SevenNodesEachHavingFiveReachableNodes for 7 but 1 Graph
4(a-e) Here is a file ColoredGraphs.als with a possible solution:

module ColoredGraphs

sig Color {}
sig Node {
color : Color

}

sig AboutColoredGraphs {
nodes : set Node,
edges : nodes -> nodes
}{ edges = ” edges &% all x : nodes, y : x.edges | not x.color = y.color }

fun TwoColorable(g : AboutColoredGraphs) {
with g {
nodes.color = 2
nodes >= 3
all x : nodes | some x.edges —— to see more interesting graphs
}
} run TwoColorable for 4 but 1 AboutColoredGraphs

fun ThreeColorable(g : AboutColoredGraphs) {
with g {
nodes.color = 3
nodes >= 3
all x : nodes | some x.edges
}
} run ThreeColorable for 4 but 1 AboutColoredGraphs

52 Predicate logic

fun FourColorable(g : AboutColoredGraphs) {
with g {
nodes.color = 4
nodes >= 3
all x : nodes | some x.edges

}
} run FourColorable for 4 but 1 AboutColoredGraphs

-- we cannot specify that a graph is 3-colorable but not
2-colorable, for in order to do this -- we need to say ‘‘there is
a 3-coloring’’ that works for this graph and ‘‘all 2-colorings’’
—-— don’t work; the presence of the existential and universal
quantifiers over relations are -- what makes this not expressible
in Alloy or any other tool that attempts to reduce this to -- SAT
solving for propositional logic

5(a-f) Here is a file KripkeModels.als with a possible solution:

module KripkeModel sig Prop {}

sig State {
labels : set Prop —-- those propositions that are true at this state

}

sig StateMachine {
states : set State,
init, final : set states,
next : states —-> states
}{ some init }

fun Reaches(m : StateMachine, s : set State) {
with m {
s = init.*next
}

} run Reaches for 3 but 1 StateMachine

fun DeadlockFree(m : StateMachine) {
with m {
init.*next & { x : states | no x.next } in final

Predicate logic 53

}
} run DeadlockFree for 3 but 1 StateMachine

fun Deterministic(m : StateMachine) {
with m {
all x : init.*next | sole x.next

}

} run Deterministic for 3 but 1 StateMachine

fun Reachability(m : StateMachine, p : Prop) {
with m {
some init.*next & { s : states | p in s.labels }

}
} run Reachability for 3 but 1 StateMachine

fun Liveness(m : StateMachine, p : Prop) {
with m {
all x : init.*next | some x.*next & { s : states | p in s.labels }
}

} run Liveness for 3 but 1 StateMachine

assert Implies {
all m : StateMachine, p : Prop | Liveness(m,p) => Reachability(m,p)
} check Implies for 3 but 1 StateMachine

assert Converse {
all m : StateMachine, p : Prop | Reachability(m,p) => Liveness(m,p)
} check Converse for 3 but 1 StateMachine

fun SimulationForFiveDf(m : StateMachine) {
with m {
states = 3
some x : states | not sole x.next
all x : states | no x.next => x in final
all x,y : states | { p : Prop | p in x.labels } =
{p:Prop | pin y.labels } =>x =y
}

} run SimulationForFiveDf for 3 but 1 StateMachine

54 Predicate logic

6(a) We write a signature for groups along with the necessary constraints
(group axioms):

sig Group {
elements: set Element,
unit: elements,
mult: elements -> elements ->! elements,
inv: elements ->+ elements
}{ all a,b,c: elements | c.((b.(a.mult)).mult) =
(c.(b.mult)).(a.mult)
all a: elements | a = unit.(a.mult) && a = a.(unit.mult)
all a: elements | unit = a.((a.inv).mult) && (a.inv).(a.mult) = unit

}

where elements models G, unit models e, and mult models *.
Please note

e that the three axioms for multiplication are encoded as constraints
attached to the signature; we display multiplication in a “curried”
form);

e the role of ! which ensures that any two group elements have a
unique result of their multiplication; and

e the role of + stating that each element has at least one inverse.

6(b) The following fun-statement generates a group with three elements:

fun AGroup(G: Group) {
G.elements = 3
} run AGroup for 3 but 1 Group

6(c) We declare

assert Inverse {
all G: Group, e: G.elements | sole e.(G.inv)
} check Inverse for 5 but 1 Group

and no counter-example is found within that scope; sole S denotes
that S contains at most one element. The small-scope hypothesis
therefore suggests that inverses are unique in all finite groups. In
this case, the small-scope hypothesis got it right: inverses are unique
in groups, even in infinite ones.

6(d) i. We declare

Predicate logic 55

fun Commutes (G: Group) {
all a,b: G.elements | a.(b.(G.mult)) = b.(a.(G.mult))
} run Commutes for 3 but 1 Group

assert Commutative {
all G: Group | Commutes(G)
} check Commutative for 5 but 1 Group

ii. Analyzing the assertion above we find no solution. The small-
scope hypothesis therefore suggests that all finite groups are com-
mutative. This time, the small-scope hypothesis got it wrong!
There are finite groups that are not commutative.

iii. In fact, increasing the scope from 5 to 6 reveals a violation to our
goal. Please run this analysis yourself and inspect the navigable
tree to determine where and how commutativity is broken.

6(e) Yes, the assertions are formulas that make a claim about all groups.
So a counter-example exists iff it exists for a single group. We already
achieved the restriction to one group with the but 1 Group in the
check and run directives.

3
Verification by model checking

EXERCISES 3.1 (p.245)

2(b)° ® 43,494,493,92,492,92; - - -
e No, because the path g3, q1, g2, 2, - .. does not satisfy a U b.

2(6) ® 43,94,493,92,92,492; - - -
e No, because the path g3, q1, g2, g2, ... does not satisfy X (a A b).
3. For each equivalence, there are two directions to prove. We prove the
two directions for the first equivalence.

e pUY — ¢ W) AF1). Suppose m E ¢ U 19p. Then take ¢ such that
7' E 1 and 7/ E ¢ for all j < i. These facts are enough to prove
mE ¢ W o and 7 E Fip.

e ¢ WY AFyp — ¢ U Suppose m E ¢ W 9 AF1p. Then 7 E Fep,
from which we derive the existence of i such that 7 E 1. Take
the smallest such i. From 7 E ¢ W 1, it follows that 7/ E ¢ for
all j < ¢. This shows that 7 F ¢ U 4.

5. The subformulas are p,—p, r, Fr, q, =q, G—~q, =1, ¢ W —r, Fr V G—g,

FrvG-q—qW —r,=pU (FrvG-q—qW —-r).
8. Add the clauses:

¢ is X¢1: return X NNF(¢)

¢ is = X¢1: return X NNF(—¢y)

¢ is Fep1: return FNNF (o)

¢ is “F¢y: return G NNF (—¢1)

¢ is G¢q: return G NNF(¢1)

¢ is 7G¢y: return F NNF (—¢)

¢ is ¢1 U ¢a: return NNF(¢1) U NNF(¢h2)

¢ is =(¢p1 U ¢p2): return NNF(—¢1) R NNF (o)

¢ is ¢1 R ¢o: return NNF(¢1) R NNF(¢2)

¢ is =(¢1 R ¢2): return NNF(—¢1) U NNF (o)

56

Verification by model checking 57

¢ is p1 W ¢po: return NNF(¢1) W NNF(¢h2)
¢ is =(¢d1 W ¢p9): return NNF(=(h2 R (1 V ¢2))).

EXERCISES 3.3 (p.247)

1(a). The two states req.busy and !req.busy satisfy Fstatus = busy
since they satisfy status = busy. The state req.ready also satis-
fies this formula since all its successors (the two states above) satisfy
it. Since the only two states which satisfy req are among the above,
we infer that all states satisfy G(request — Fstatus = busy). In
particular, this will be true for all states which are reachable from
some initial state (which is this case amounts to the same thing as
“all states”).

3. The hint given in the remark is incorrect as it stands. To make it correct,
we need two additional assumptions:

e The msg_chan.forget and ack_chan.forget are both false;
e The components are composed synchronously (i.e. without the
process keyword).

Under these assumptions and the assumptions about msg_chan.outputl
and mack_chan.output being constant 0, the system is determinis-

tic.

The first few states are given as follows:
var alias S0 S1 S2
s.st sending sending
s.messagel msg_chan.inputl | 0 0
s.message2 msg_chan.input2 0 0
r.st receiving receiving
r.ack ack_chan.input 1
r.expected

msg_chan.outputl r.messagel
msg_chan.output2 r.message2
msg_chan.forget
ack_chan.output s.ack
ack_chan.forget

OHOHFHOOH
OHOOOO

EXERCISES 3.4 (p.247)

1(a). The parsetree is:

58 Verification by model checking

1(b). The parsetree is:

1(c). The parsetree is:

1(d). The parsetree is:

Verification by model checking 59

T

CENO

()

2(a). In CTL every F and every G has to be combined with a path quantifier
A or E. For example, AFEGr and AF AGr etc. are such well-
formed CTL formulas.

2(f). The formula AEF 7 is not in CTL, since we cannot put a path quan-
tifier A in front of a CTL formula (here: EF 7).

2(g). The formula A[(p U ¢) A (p U r)] is not in CTL, since there is no
clause of the form A[¢; A ¢o] in the grammar of CTL. NB: There is
also no clause of the form A[(¢1 U ¢2) A (¢3 U ¢4)].

3(c). This is a CTL formula; its parsetree is:

3(e). This is a CTL formula; its parsetree is:

60 Verification by model checking

(=9
(3
)

Q

()

3(f). For Fr A AGq to be a CTL formula it would have to be the case that
Fr is a CTL formula as there is only one clause for constructing
conjunctions, but this is not the case.

4. We list all subformulas of the formula AG (p — Alp U (-p A A[-p U

q])]) by first drawing its parsetree; then it is simple to read off all
subformulas from that tree:

Verification by model checking 61

The list of subformulas is therefore

P

q

-p

Al-p U ¢

—pAA[-p U ¢

AlpU-pAA[-pU (]
p—AlpU-pAA[-pU g
AG(p— AlpU (=p A A[-p U q]))).

6(b)(i). Since r € L(sp), i.e. r is listed “inside” state sg, we have M, s¢ F .
Thus, we infer that M,soF —-p — r, for - - T=T.

62

Verification by model checking

6(b)(iii). Since M,syp F r (see item 1b(i)) and since there is an infinite

path sg — sg — so — ---, we have M, sg E EGr. Therefore, we
infer M, sg ¥ " EGr.

7(a). We have [T] = S since by definition s F T for all s € S.
7(f). We have s E ¢1 — ¢o if s F ¢p2 or s ¥ ¢1. This immediately renders

[$1 = ¢o] = (S — [¢1]) U [¢2]-

7(g). We already saw that AX ¢ and -EX —¢ are equivalent. Thus, this

9. We

10(b).

10(c).

identity is clear.

begin with the modified versions based on G and F. Independent
of the path quantifier A or E, we need to modify F and G to stand
for a strict future, respectively a strict globality. This can be done
by wrapping the respective CTL connective with an EX or an AX
respectively:

new AG ¢: AX (AG ¢) (Why is AG (AX ¢) incorrect?)

new EG ¢: EX (AG ¢)

new AF ¢: AX (AF ¢)

new EG ¢: EX (EG ¢).

As for the U connective, we basically want to maintain the nature of
the ¢1 U ¢ pattern, but what changes is that we ban the extreme
case of having ¢ at the first state. Thus, we have to make sure that
¢1 is true in the current state and conjoin this with the shifted AU,
respectively EU operators:

new AU: é1 ANAX (Afgr U o))
new EU: $1 NEX (E[¢1 U ¢o]).

1. First, assume that s F EF ¢ V EF1. Then, without loss
of generality, we may assume that s F EF ¢ (the other case
is shown in the same manner). This means that there is a
future state s,, reachable from s, such that s, F ¢. But
then s, F ¢V ¢ follows. But this means that there is a state
reachable from s which satisfies ¢ V . Thus, s F EF (¢ V 9)
follows.
2. Second, assume that s F EF (¢ V). Then there exists a state
Sm, reachable from s, such that s,, E ¢ V 1. Without loss
of generality, we may assume that s,, F . But then we can
conclude that s F EF %, as s, is reachable from s. Therefore,
we also have s F EF ¢ V EF 4.
While we have that s F (AF ¢ V AF) implies s F AF (¢ V v),
the converse is not true. Therefore, the formulas AF ¢ V AF ¢ and
AF (¢ V1)) are not equivalent. To see that the converse fails, consider

Verification by model checking 63

a model with three states i, s and ¢ such that 1 — s, 7 = ¢, s — s,
s > t,t — s, and t — ¢t are the state transitions. If we think of ¢
and 1 to be atoms p, respectively g, we create labelings L(i) = (),
L(s) = {p} and L(t) = {q}. Since s and t satisfy p V ¢ we have
i F AF (p V ¢q). However, we do not have i F AFpV AF ¢:

e To see i ¥ AF p we can chose the pathi >t —>t—>t—>t— ---.
e To see 1 ¥ AF g we symmetrically choose the path i - s — s —
5= e

10(e). This is not an equivalence (it would have to be —=AG ¢ instead of
—AF ¢). Consider the model from item 1c. We have s F EF —p since
we have the initial path segment s — ¢t — But we do not have
s E =AF p, for the present is part of the future in CTL.

10(h). Saying that a CTL formula ¢ is equivalent to T is just paraphrazing
that ¢ is true at all states in all models. (Why?) But this is not the
case for EG ¢ — AG ¢. Consider the model of item 1lc. Clearly, we
have s F EG p, but we certainly don’t have s E AGp. (What about
T and AG ¢ — EG ¢, though?)

11(a). The formula AG (¢ A 1) is equivalent to AG ¢ A AG 1 since both
express that ¢, as well as 9, is true for all states reachable from the
state under consideration.

14. function TRANSLATE (¢)

/* translates a CTL formula ¢ into an equivalent one from an adequate fragment */
begin
case
¢is T : return =L
¢is L : return L
¢ € Atoms : return ¢
¢ is 7¢y : return “TRANSLATE ¢
@ is ¢1 A ¢o : return (TRANSLATE ¢1) A TRANSLATE ¢-
¢ is ¢1 V ¢2 : return TRANSLATE (—¢1 A —¢p2)
¢ is ¢1 — ¢o : return TRANSLATE (—¢ V ¢2)
¢ is AX ¢; : return TRANSLATE —-EX —¢;
¢ is EX ¢1 : return EX TRANSLATE ¢,
¢ is A($1 U ¢2) : return TRANSLATE —(E[~¢2 U (m¢p1 A —¢p2)] V EG —¢h2)
¢ is E(¢1 U ¢p2) : return E[TRANSLATE ¢; U TRANSLATE ¢9]
¢ is EF ¢ : return TRANSLATE E[T U ¢,]
¢ is EG ¢ : return -AF -TRANSLATE ¢
¢ is AF ¢1 : return AF TRANSLATE ¢,
¢ is AG ¢; : return -EF “TRANSLATE ¢,

64 Verification by model checking

end case
end function

You can now prove, by mathematical induction on the height of ¢’s
parse tree, that the call TRANSLATE ¢ terminates and that the re-
sulting formula has connectives only from the set { L, -, A, AF ,EU ,EX }.

EXERCISES 3.5 (p.250)

1(a). The process of translating informal requirements into formal specifica-
tions is subject to various pitfalls. One of them is simply ambiguity.
For example, it is unclear whether “after some finite steps” means
“at least one, but finitely many steps”, or whether zero steps are al-
lowed as well. It may also be debatable what “then” exactly means
in “... then the system enters ...”. We chose to solve this problem
for the case when zero steps are not admissible, mostly since “fol-
lowed by” suggests a real state transition to take place. The CTL
formula we came up with is

AG (p - AXAG (—qV A[-r U t]))
which in LTL may be expressed as
G(p = XG(—qV —r Ut)).

It says: At any state, if p is true, then at any state which one can
reach with at least one state transition from here, either ¢ is false, or r
is false until ¢ becomes true (for all continuations of the computation
path). This is evidently the property we intent to model. Variaous
other “equivalent” solutions can be given.

1(f). The informal specification is ambiguous. Assuming that we mean a
particular path we have to say that there exists some path on which
p is true every second state (this is the global part). We assume that
the informal description meant to set this off such that p is true at
the first (=current), third etc. state. The CTL* formula thus reads
as

E[G(p A XX p)].

Note that this is indeed a CTL* formula and you can check that it
insists on a path sg — s1 — sg — ... where s, s2, 84, ... all satisfy

p.

Verification by model checking 65

6(b). Notice that the first clause in the grammar for path formulas says that
“every state formula is a path formula as well”. This is a casting in
programming terminology. Semantically, it is justified since we can
evaluate a state formula on a given path by simply evaluating it in
the first state of that path. With this convention we can analyze the
meanings of the two given CTL* formulas:

o A state s satisfies AG Fp iff for all paths « with initial state s
satisfies GFp, i.e. p is true infinitely often on the path 7. Thus,
AGFp is equivalent to AG (AF p).

e The last observation makes clear why this cannot be equivalent to
AG (EF p), although the former always implies the latter. Recall-
ing our model of Exercise 3.4, item 1(c), note that i F AG (EF p),
since every state can reach state s, but that i ¥ AG (AFp) (e.g.
the pathi >t —>t—>t—...).

6(d). Clearly, AXpV AX AX p implies A[Xp V XX p| at any state and any
model (why?). To see that the other implication fails in general,
consider the model below:

LN

State s satisfies A[X pV XX p] since every path either has to turn left
(Xp) or right (XX p). But state s neither satisfies AX p (turn right),
nor AX AXp (turn left). Thus, it does not satisfy AXpV AX AX p.
7(a) E[FpA(q U r)] is equivalent to E[q U (pAE[g U r])]VE[q U (r AEF p)].
7(b) E[Fp A Gq] is equivalent to E[qg U (p AEG q)].
7(d) Al(p U q) A Gp] is equivalent to A[p U ¢] A AG p.
7(e) A[Fp — F¢| is equivalent to —=E[F p A G—q], which we can then write
as =E[-q U (p A EG —¢)] which is in CTL. If we allow R in CTL
formulas, it can be written more succinctly as A[g R (p — AF q)].

66 Verification by model checking

EXERCISES 3.6 (p.251) ¢; to ¢4 refer to the Safety, Liveness, Non-blocking
and No-strict-sequencing properties given on p.189.

1. e The specification SPEC AG! ((prl.st = ¢) & (pr2.st = c)) holds
since no state in that transition system is of the form cc0 or ccl.
This does not require any fairness constraints.

e The specification SPEC AG((prl.st = t) -> AF (prl.st = c))
is true, but depends on the use of fairness constraints. There are
six different states in which pri.st = t holds: tt0, tt1, tc0, tn0,
tnl, and tcl. Note that there are transitions from some of these
states to themselves, and a path which just ended up continuously
in any of these states would violate the specification we mean to
verify. This is exactly where fairness needs to come into the pic-
ture.

— The state tt0 eventually must transition to ct0, since Fairness running
makes process 1 move at some point. Similarly, state ¢¢1 must
transition to tcl eventually.

— The states tn0 and tnl can remain where they are if process 2
makes a move by deciding to stay in its non-critical mode. But
process 1 will eventually take a move (because of FAIRNESS
running), and these states will then transition to ct0 and ctl
respectively.

— The system cannot remain in the states tc0 and tcl forever be-
cause process 2 must eventually get selected to run, and the
fairness constraint ! (st = c¢) means that it must eventually
leave its critical section.

Given the fact that the system can never stay in any of these six
states forever, we see that eventually process 2 enters its critical
section from any such state. (Why?)

e The argument for the specification

SPEC AG((pr2.st = t) -> AF (pr2.st = c))
is symmitric.
e The specification
SPEC EF(prl.st=c &
E[pri.st=c U (!pri.st=c & E[! pr2.st=c U pril.st=c 1)])

is true without any fairness assumptions, for it simply states the
possibility of a certain execution pattern and we can read off such
a path which enters ¢; twice in a row before it enters co. Indeed, if

Verification by model checking 67

we remove all fairness constraints (even FAIRNESS running), this
property still holds.
1. AG —l(61 A 62)

AG —|(Cl N CQ)
—l(Cl A 02)

AG —(c1 A ea) 52
—|(01 A CQ)
—|(Cl A CQ)

AG —(c1 A ea)

—|(Cl N 62) —|(Cl N Cg)
AG —1(01 /\02) AG —l(C1 /\Cg)

No state gets a c¢; A ¢z label. Therefore, all states get an
—(c1Acg) label. Thus, all states get, and keep, an AG —(c1Acs)
label.

2. AG(t; » AF¢)

68

Verification by model checking

].:AFCl
t1 — AF C1

AG (t Cl)

First, we determine all labels for AF c;; only states so and s4
get such a label. Then we label a state with ¢; — AF ¢ if it
does not have a t;-label, or if it does have an AF c¢;-label. Note
that a state gets such a label if both cases apply. Indeed, this
procedure does exactly what the truth table of t1 — AF ¢
would compute if we think of T as “having a label” and F as
“not having a label”.

Second, we label all “¢; — AFc¢; states” with AG(t; —
AF ¢;), but in the next round those labels are deleted for
states sg, $5, and sg, causing the deletion of the remain-
ing such labels in the next round. Thus, no state satisfies
AG (tl — AFCl).

3. AG (ny — EX#;)

Verification by model checking 69

1: AG (’I’Ll — Eth)
ny — EX#;

52

n1 — EX

1:AG (ny — EXt) m - EXt

1:AG (n, —» EXt,)

ny = EXty ny — EXt
1:AG (n1 —» EX#) 1:AG (ny — EXty)

Similar to the case of t; — AF ¢; we label states with n; —
EX; if they don’t have an ni-label, or if they have an EX #;-
label, which we do not show in the figure above. It turns
out that all states get this label. Thus, we have to label all
states with AG (n; — EX ¢1) initially and so all of these labels
survive the next round, i.e. all states get this label for good.

4. EF (61 A\ E[C1 U (ﬂcl A\ E[—|CQ U Cl])])

70 Verification by model checking

We write ¢ for E[-cy U ¢q].
We write ¢2 for —c; A ¢1.

The interative procedure for determining the E[-co U ¢]
labels takes three rounds. Then we “throw out” those la-
beled states which have a cj-label. The resulting labels for

—c1 AE[-¢2 U ¢1] are now the target formula for the next EU
operator:

1: ¢3
We write ¢3 for E[Cl U ¢2]

S2

2: ¢3

The iteration for this EU-labeling (¢3) requires only two

Verification by model checking 71

rounds. Next, we refine ¢35 to those states which also sat-
isfy ¢; (label for ¢y):

We write ¢4 for c; A ¢3.
We write ¢ for EF ¢4.

which triggers the iterative procedure for EF, which ter-
minates after four rounds, concluding that all states satisfy
EF (61 A E[Cl U (—161 A E[ﬂCQ U Cl])])
8. function SATgg (¢)
/* determines the set of states satisfying EG ¢ */
begin
local var W, X,Y
begin
Y := SAT (¢);
X =S5
repeat until X =Y
begin
X =Y,
Y :=Y N {s|exists s’ such that s » s’ and s’ € Y}
end
return Y
end

9. There are lots of ways of scheduling this in a strictly alternating fashion.
We chose a fairly deterministic version:

Verification by model checking

2

Note that the states on the left half, including n1n9, are the only ones

that satisfy E[-c2 U ¢1]. Only t1n9 and nine satisfy —ci A E[-co U
c1]. These two are also the only states which satisfy E[c; U —¢1 A
E[-c2 U ¢1]]. Since none of them satisfies ¢, there is no state in the
system which satisfies ¢; A E[¢; U —¢1 A E[-¢e U ¢1]]. Therefore, no
state of that system can satisfy EF (¢c; A E[c; U =¢; A E[-c2 U ¢1]]).

11. e Let ¢ be true infinitely often on the computation path sy — s;1 —

$9 — Proof by contradiction: Suppose that the negation of
our claim is true. This means that there exists some n > 0 such
that for all m > n we have s, ¥ ¢. But then ¢ could only be true
on finitely many states of that path, namely at most at the states
80y S1yevnySn_1-

Suppose that for every n > 0 there is some m > n with s, F ¢.
Proof by contradiction: Assume that ¢ is only true at finitely many
states on that path. Then there has to be a maximal number ng
such that no s, with m > ng satisfies ¢. By this is a contradiction
to the assumption above which applied “for all n > 0”, so in
particular it applies to that ny.

15. All the states are labelled EcGT (i.e., all the states have a fair path

leading from them).

EXERCISES 3.7 (p.252)

1(a). e The function H; is monotone: if Y is a subset of Y’ then H; only

removes the elements 1, 4, and 7 from Y and Y’ if applicable.
Since Y C Y’ this ensures that H;(Y) C Hi(Y").

Verification by model checking 73

e The function Hy is not montone: e.g. {2} C {2,5}, but Hz({2}),
which is {5,9}, is not a subset of H2({2,5}), which is {9}.

e The function Hj3 is monotone since union and intersection are
monotone and the composition of monotone operations is again
monotone.

1(b). We compute the least and greatest fixed-point of H3 with just one
iteration each: it is {2,4} in each of these cases. So why can we say
that this is the only fixed-point of H3?

2(a) Let X C X' and s € Fi(X). Then s € AN F(X) implies s € A and
s € F(X). So in order to show s € F1(X') = AN F(X') it suffices
to show s € F(X'). But this follows from s € F(X) as X C X' and
since F' is monotone.

2(b) Let X C X' and consider s € F(X).

e If s€ A then s € AU (BN F(X') = F5(X') follows.

e Ifs¢ A, then s € F5(X) = AU(BNF(X)) implies s € BN F(X),
but we already saw in item (a) that this implies s € BN F(X')
and so s € AU (BN F(X')) = F»(X') does it.

5. ¢ Let X C X' and s € H(X) = [¢] N{so € S| so — s1 implies s; € X}.
Then s € [¢] is clear. If s’ € S with s — ', then s € H(X)
implies s’ € X. Since X C X', we infer from that s’ € X’. But
this shows s € [¢] N {so € S | so — s1 implies s; € X'} = H(X').

e We compute

H([AG¢]) = [¢o]n{so € S|so— s1 implies s1 € [AG @]}
= [¢]N[AXAGJ]
= [AG4].

e We have already seen that [AG ¢] is a fixed point of H. To show
that it is the greatest fixed point, it suffices to show here that any
set X with H(X) = X has to be contained in [AG ¢]. So let s
be an element of such a fixed point X. We need to show that sg
is in [AG ¢] as well. For that we use the fact that

so€e X =H(X)=[¢]N{s€S|s— s implies s; € X}

to infer that s; € X for all s; with so — s1. But, since s7 is
in X, we may apply that same argument to s; € X = H(X) =
[N{s € S| s — sy implies s € X} and we get so € X for all
so with s1 — so. By mathematical induction, we can therefore
show that s,, € X, where s,, is any state that is reachable from s.
Since all states in X satisfy ¢, this means that s is in [AG ¢].

74

Verification by model checking

(d) The pseudo-code for SAT pq:

function SATaq (o)
/* determines the set of states satisfying AG ¢ */
local var X,Y
begin
Y = SAT (¢);
X = 0;
repeat until X =Y
begin
X =Y,
Y:=YN{seS|s— s impliess’ € Y}
end
return Y
end

4

Program verification

EXERCISES 4.1 (p.299)

1. This is an open-ended and thought-provoking exercise. For example,
Software Development Environments can improve the reliability of
code by tracking version numbers and ensuring that all modified
code is re-compiled, or linked when necessary. Editors can enhance
the realibility of software by depicting source code through use of
colors and fonts that check the integrity of syntax for the respective
programming language. Programming language constructs may also
improve or worsen the reliability of software. High-level abstractions
and encapsulation principles are generally perceived as aiding the
robustness of software whereas explicit pointer management may
result in efficient but flawed software. Etc.

EXERCISES 4.2 (p.299)

1. In what circumstances would if B {C;} else {C>} fail to terminate?
(We assume that the program is well-typed.) Our core language is
such that boolean expressions B in themselves cannot diverge, i.e.
they will return a truth value. Thus, this code can only diverge if
C1 or Cy diverge and if the control flow passes execution on to the
respective diverging command C; or Cy. Notice that this program
necessarily diverges if both Cy and Cs diverge.
2. We can express such a for-loop in our core language as
C_1;
while B {
C_3;
C_2;

}

75

76 Program verification

Note that this form first executes the body Cs before it performs the
update operation Cy for the boolean condition B.

EXERCISES 4.3 (p.300)

1(a) Since l(z) = =2, I(y) = 5, and l(2) = —1 we have [F z + y < z as
—2 45 is not less than —1. Thus Il F (z +y < 2z) = ~(z*xy = 2) as
the assumption of the implication does not hold.

1(c) We have | F (z +y — z) < z xy * z since the expression on the
left evaluates to —2 + 5 — (—=1) = 4 and the one on the right to
(—=2)-5-(—1) =10.

2. For any ¢, ¢, and P we have that Ft(¢) P (¢) implies Fpar(¢) P (1)-
For let Fiot(®) P (1) be the case. Assuming that program P is ex-
ecuted in a store meeting the precondition ¢ we then know that it
will terminate its execution and end up in a final state meeting the
postcondition . If we ignore that this secures termination we have
just shown Fpar (@) P (1).

Please remember that you can only understand proofs of (¢) P (1)
by reading them in a bottom-up fashion!
5(a). We show Fpar(z >0)y = x + 1; (y > 1) by

(z > 0)

((z+1) >1) Implied
y=x+1;

(y > 1) Assignment

5(b). We show Fpar(T)y = x5y = x + x + y; (y=3-z) by

(z+xz+z=3-x) Implied
((x+z+y)=3-z) Assignment

(y=3-z) Assignment

5(c). We show Fpar(z > 1)a = 15y = x5y = y-a; (y>0Az>y) by

Program verification i

(z>1)

(z—1>0Az>z—1) Implied
a=1;

z—a>0Az>z—a) Assignment
y = x;

((y—a)>0Az>(y—a)) Assignment
vy =y - oa;

(y>0Az>y) Assighment

6(a). There are infinitely many programs which meet these input/output
behaviors. To implement (T) P (y = z + 2) we made a fairly obvious
choice, namely the assignment y = x +2; The proof is

(T)

((z+2)=2+2) Implied
y=x+ 2;

(y=z+2) Assignment

6(b). There are infinitely many programs which meet these input/output
behaviors. To implement (T) P (z >z +y+4) we chose a non-
optimal, but still correct, sequence of assignments:

(T)

(10 > 4) Implied

(z+ (y+10) >z+y+4) Implied
u=y+ 10;

(z4+u)>z+y+4) Assignment
zZ =X + u;

(z>z+y+4) Assignment

9(c). We show that any instance of the rule If-Statement can be replaced
by a proof in the proof system without this rule:

(BA¢)Ci(¥) . (~BA) C (¢) .
Implied Implied
Q(B — ¢1) A BD 4 Q’LL'D mplied q(_!B — ¢2) N —|BD Cy (I@[JD Implied
(I(B — ¢1) A ("B — ¢2) A BD 01 (I’(b[) (I(B — ¢1) A ("B — ¢2) A —|BD 02 (I’(pb

If-statement

((B = ¢1) A (B = ¢2)) if B {C1} else {C2} (¢)

78 Program verification

10. We show tpar(T) P (2 = min(z,y)), where min(z,y) is the smallest
number of z and y (e.g. min(7,3) = 3) for the code P given below:

(T)

if x>y {
(TA(z>y)
(y = min(z,y))
zZ = y;
(2 = min(z,y))
} else {

(T A=(z>y))
(z = min(z, y))

(2 = min(z, y))

(z = min(z,y))

If-statement

Implied

Assignment

If-statement

Implied

Assignment

If-statement

If z equals y at runtime then the second branch of the if-statement

gets executed and the value of z will be the result.

This is fine

as this value then also equals the value of y. Logically, we cannot
really improve our description of min(z, y) (in the sense that we could
impose more or less properties on it), but human beings might benefit
from the fact the you draw their attention to special or overlapping
cases of your specification (such as the one where z equals y). (How
do you prove this with the modified proof rule for if-statements?)

11(a). We write code P which satisfies (T) P (z = max(z,y)) under par-
tial correctness, where max(z,y) denotes the larger of z and y:

Program verification 79
()
if x <y {
(TA(z<vy)) If-statement
(y = max(z,y)) Implied
= y;
(z = max(z,y)) Assignment

z

{
TA=(z<y)) If-statement
z = max(z,y)) Implied

(z = max(z,y)) Assignment

(z = max(z,y)) If-statement

Notice that we simply took the code and the proof for min and
changed > into < and min into max.
11(b). We seek a program P which satisfies

Foar(T) P (((z=5) = (y=3)) A((z=3) = (y=1))). (41)

Again, there are many programs one could write here as a solution.
We chose a fairly natural one. We prove (4.1) as follows:

()
if x =5 {
(T A(z=5)) If-statement
((z=5) > B3=3)A((zx=3) > (3=1))) Implied
y =3
((z=5)—=(y=3)A((x=3) = (y=1))) Assignment
} else {
(T A=(z =5)) If-statement
((z=5)—=>(1=3)A((x=3)—=(1=1))) Implied
y=1;

(=5 = (y=3)A((z=3) = (y=1))) Assignment

((z=5) = (w=3)A((z=3) = (y=1))) |f-statement

80 Program verification

Note that the applications of the rule Implied in lines 4 and 9 was
valid since F - - =Tand T—>T=T.
Two other solutions are possible: one could program a “nested”
if-statement which is not really needed since the precondition only
means to distinguish between two values of z, so we may identify its
computation for all values of z other than 5. The second solution is
an optimization: the program

y=x - 2;
also satisfies the required pre- and postconditions. (Why?)

13. We show tpa(z > 0) Copyl (z =y). First, we note which variables
get updated in the body of the while-statement: y and a. Second,
we compute their values after each iteration for, say, the first four
iterations. Third, upon inspection of these values we suggest y =
T — a as a candidate for an invariant. The proof is

(z>0)

0=z—1z) Implied
a = x;

(0=z—a) Assignment
y =0;

(y =z —a) Assignment

while !(a = 0) {

(y=z—a) Invariant Hyp. A guard
(y+1)=z—(a—1)) Implied
y=y+1
(y=z—(a—1)) Assignment
a=a-1;
(y=z—a) Assignment

((y=z—a)A==(a=0)) Partial-while
(y== Implied

Note that we never really made use of the precondition z > 0; this
is in contrast to the corresponding proof of total correctness which
additionally secures program termination; then this precondition is
instrumental in securing program correctness.

Program verification 81

14. We show Fpar(y > 0) Multil (z = z - y). First, we note which variables
get updated in the body of the while-statement: z and a. Second,
we compute their values after each iteration for, say, the first four
iterations. Third, upon inspection of these values we suggest z = z-a
as a candidate for an invariant. The proof is

(y >0)

(0==z-0) Implied
a = 0;

(0==z-a) Assignment
z = 0;

(z=2z-a) Assignment

(z=x-a) Invariant Hyp. A guard
(z+z==z-(a+1)) Implied
zZ =z + Xx;
(z=z-(a+1)) Assignment
a=a-+1;
(z=1z-a) Assignment

((z=z-a) N-=(a=1y)) Partial-while
(z=2z-y) Implied

Again, we never used the precondition y > 0 for this partial cor-
rectness proof, but it is crucial in securing total correctness later
on.

18. We show tpa (2 > 0) Downfac (y = z!). First, we note which variables
get updated in the body of the while-statement: y and a. Second,
we compute their values after each iteration for, say, the first four
iterations. Third, upon inspection of these values we suggest y-(a!) =
z! as a candidate for an invariant. However, since =(a > 0) does not
imply a = 0, we need to strengthen this invariant to (y - (a!) =
z!) A (@ > 0). The proof is

82 Program verification

(z >0)
((1- (") = =) A(z>0)) Implied
((1-(a) =2 A (a>0)) Assignment
y =1
((y - (a) = z) A (a > 0)) Assignment
while a > 0 {
((y-(a)=x)A(a>0)A(a>0)) Invariant Hyp. A guard
(y-((a—1D)!-a)=x)A(a—12>0)) Implied
((y-a)-((a—DH)=2zh) A(a—12>0)) Implied
Y=Y *xa;
(y-((a—1))=zh)A(a—12>0)) Assignment
a=a-1;
((y-(al) =z) A (a>0)) Assignment
}
((y - (a!)) =) A(a>0) A—=(a >0)) Partial-while
(y ==!) Implied

Note that we had to strenghten our invariant hypothesis by adding a
conjunct (a > 0). This was needed since =(a > 0) does not in itself
imply the desired (a = 0) to secure that our invariant implies the
postcondition.

21(a). We simulate the code for each of these arrays in a table which lists

Program verification

the values of k, t, and s where “time” runs downwards.

k| t s
2
-3
-3
—2
-3
3
—4
—4
4
-1
—4
5
-9
-9
6

83

Notice that the minimal-sum section is unique in this case: it is the

sum of the entire array which is —9, the last value stored in s.

21(c). We proceed as in item 1:

k t s
2
-1
-1
-3
-3
3
—6
—6
4
—10
—10
5
1087
—10
6

Again, there is a unique minimal-sum section: the entire array but

the last entry.

84 Program verification

23. A direct attempt in proving the specification S2 for Min_Sumwould look

like this:
(T)
(a[1] = S(1,1)) Implied
(3i,7 (i <j <nAdll] = 8(,35))) Implied
kK = 2;
(Fi,7 (i <j<nAall] =5(,j))) Assignment
t = al[1];
(Fi,7 (i <j<nAall] =8(7j))) Assignment
s = alll;
(34,7 <j<nAs=5(7))) Assignment
vhile (k !=n + 1) {
(F,7 i <j<nAs=5(,73))) Invariant Hyp. A guard
(3i,7 (i < j < nAmin(s, min(t + a[k], alk])) = S(z,7))) Implied
t = min(t + alk], alkl);
(34,7 (i < j <nAmin(s,t) = S(i,7))) Assignment
s = min(s,t);
(F,7 G <j<nAs=5(7))) Assignment
k=k + 1;
(3,7 (i <j<nAns=58(ij))) Assignment
}
(Fi,7 (i <j<nAs=5(1j))) Partial-while

It looks fine if it were not for the justification of the Implied rule in
the while-loop. Knowing that s is the sum of some section does not
immediately imply that min(s, min(¢+ a[k], a[k])) is the sum of some
section as well. Evidently, we need to reason that min(t + alk], a[k])
is the sum of some section for all values of k that the program is
computing. This proof is similar to the one given above and we omit
it here.

EXERCISES 4.4 (p.303)

1(a). We prove kiot(z > 0) Copyl (z = y) as follows: since the while-loop
in Copyl has as guard B the boolean expression —(a = 0) and,

Program verification 85

since ¢ > 0 is an invariant of the entire program (assuming the
precondition z > 0), we may instantiate the formula 0 < E = Ej
to 0 < a = Ey. Of course, we may reuse the invariant ¢y, which is
a + 1y = z from the partial correctness proof. With these data at
hand we simply have to follow the proof pattern for total correctness

proofs:
(z=>0)
((z+0=1)A(z>0)) Implied
a = x;
((a+0=2z)A(a>0)) Assignment
y=0;
((a+y=1z)A(a>0)) Assignment

while !(a = 0) {
(a+y=2z2)A=(a=0)A(0<a=Ep)) Invariant Hyp. A guard
((a—14+y+1=2)A(0<a—-1<E)) Implied

y=y+1
((a—14+y=2)AN(0<a-1< Eyp)) Assignment
a=a-1;
((a+y=2z)A(0<a< Ey)) Assignment
}
((a+y=2)A-~(a=0) Total-while
(z=vy) Implied

Note that the Implied in line 9 is valid, since =(a = 0) and 0 < a = Ejy
together imply 0 < a —1 < Ej.
1(b). We show Fyot(y > 0) Multil (z = z * y), where the code for Multil
is
a = 0;
z = 0;
while (a !=y) {
zZ =z + X;
a=a+1;
}
The boolean guard a != y is equivalent toy - a != 0, so we may
instantiate 0 < F = Ej to 0 < y —a = Ey. This works out as

86

1(d).

Program verification

0 < y—a turns out to be an invariant of the entire program. Since we
already showed that (y > 0) Multil(z = z - y) holds under partial
correctness, we may reuse the invariant ¢;, which is z = x - a, from
that proof. Now everything is in place for crafting the proof in a
bottom-up fashion:

(y>0

(0=z-0)A(0<y—0)) Implied
a = 0;

(0=z-a)AN(0<y—a)) Assignment
z = 0;

((z=z+xa)AN(0<y—a)) Assignment

while (y - a !=0) {

(z=z-a)A-(y—a=0)A(0<y—a=Epy)) Invariant Hyp. A guard

(
(z+z=2-(a+1)A(0<y—(a+1) < Ey)) Implied

Z =z + X;

(z=z-(a+1D)AN0<y—(a+1)< Ey)) Assignment
a=a+1;
(z=z-a)AN(0<y—a< Ey)) Assignment
}
((z=z-a) A==(y —a=0)) Total-while
(z=z-9) Implied

Again, the use of y > 0 was crucial in justifying line 2; this program
diverges whenever y is negative. Make sure that you understand why
the application of Implied in line 9 is justified.

In order to prove Fior(z > 0) Downfac (y = z!) we may think of the
Boolean guard a > 0O asa != 0, for a > 0 turns out to be an invari-
ant of the entire program. This suggests that 0 < F = Ej is just
0 < a = Ey. We need as full invariant (y - (a!) = z!) A (@ > 0) from
the case of partial correctness; the formula y- (a!) = z! alone will not
do, since we mean to identify —(a = 0) with @ > 0. Thus, the entire
proof may be constructed as follows:

Program verification 87

(z=0)

(L (zh) =2)A(xz>0)A(0<x)) Implied

(1 >|: (@) =z2)A(a>0)A(0<a)) Assignment
y =1

((y*(a!) =2!) A(a>0)A(0<a)) Assignment

while a !=0 {

((y-(@)=zh)A(@a>0)A(=(a=0)A(0<a=Ey)) Invariant Hyp. A guard
(y-((a—1'-a)=a)A(a>0)A(0<a—1<Ey)) Implied
((y-a)- ((a—D)=2h) A(a>0)A(0<a—1< Ep)) Implied
Y=Yy *a;
((y-((e=1DH) =2 A(a>0)A(0<a—1< Ey)) Assignment
a=a-1;
((y-(a) =2z) A(a>0)A(0<La< Ey)) Assignment
}
((y-(al) =2 A (a>0) A==(a=0)) Total-while
(y==!) Implied

Note that the ¢ > 0 in line 6 stems from the invariant, whereas the
second a > 0 results from the proof pattern 0 < E.
1(e). We prove Fot(z > 0) Copy2 (z = y), where Copy2 is the code
y = 0;
while (y != x) {
y=y+1

}

The boolean expression B is y != x which we can rewrite to the
equivalent expression x - y. Therefore, the precondition z > 0 sug-
gests to instantiate 0 < F = Fy to 0 < x —y = Ey. An invariant
¢r1 requires that ¢r A (z —y = 0) implies z = y. Since the latter is
already a consequence of x — y = 0, we may simply choose T for ¢;.

88 Program verification

(z>0)

(TA(z—-02>0)) Implied
y=0;

(TA(z—y>0)) Assignment

while x -y !'=0 {

(TA=(z—y=0)A(0<z—y=Ey)) Invariant Hyp. A guard
(TAO<z—(y+1) < Ep)) Implied
y=y+1
(TA(O<z—-y<Ey)) Assignment
}
(TA==(z—y=0)) Total-while
(zr =1v) Implied

Note that we actively made use of the precondition z > 0 and that
this code diverges if z < 0.

EXERCISES 4.5 (p.304)

1(a). The method certify V may itself call other certifications methods,
e.g. two such methods certify V1 and certify V2, and may accept
a cerificate if both calls to V1 and V2 judge the certificate to be
valid. Programming by contract is useful as it can specify necessary
or sufficient conditions for accepting certificates.

1(b). One may face self-certifying services. For example, if V1 calls certify .V
and that method relies on some method call to V1, then V1 could in-
strument that method code so as to influence the judgment of V
withing certify.V.

2(a). We write a contract for method isGood:

method name : isGood

input : amount of Type int

assumes : access to ‘balance’

guarantees : isGood(amount) iff balance >= amount
output : of Type boolean

modifies only: nothing modified

2(b). The method withdraw only modifies balance and accepts amount of
type int. Therefore it suffices to show that it meets its guarantee, as-
suming that balance <= 0 is true. If the boolean guard in its body

Program verification 89

evaluates to false, then balance is not being modified and so sat-
isfies balance <= 0 by assumption. If the boolean guard evaluates
to true, then the value of amount is negative and isGood(amount)
returns true. By the guarantee of isGood the latter means that the
value of balance is greater or equal to the value of amount. But
then the execution of the assignment for balance ensures that its
new value is greater or equal to zero.

5
Modal logics and agents

EXERCISES 5.2 (p.350)

1(a)iii. The relation a I ¢ holds as state a is labelled with ¢ in the figure.

1(a)iv. The relation a IF OOg holds iff z |- Og holds for all z with R(a, z).
Since e and b are the only instances of x which satisfy R(a,z), we
see that @ |F OOq holds iff e IF Og and b I Og hold. But none of
this is the case. For example, we have R(b,e) and e | g, so b If Og
follows.

1(a)vi. The relation a IF OO—q holds iff e IF =g and b I O—g holds,
since e and b are the only x with R(a,z). First, we have e IF &g,
since there is some z with R(e,z) and z I —g; choose z to be e.
Second, we also have b IF &—¢, because we may choose again e as z
with R(b,e) and e IF —g. In conclusion, a I OC—g holds.

1(a)x. We have ¢ IF OL iff z I L for all z with R(c,z). By definition
of IF, we have z If L for all z, so ¢ IF OL holds iff there is no z
with R(c,). Inspecting the figure, this is evidently the case. Thus,
c|F 0L holds.

1(b)iii. We seek a world which satisfies Op V g, i.e. a world z such that
there are worlds y and y' with R(z,y) and R(z,y') such that y I p
and 3y Ik g. If we choose ¢ for z and b for y and ¢/, this is clearly
realized. Therefore, ¢ IF Op VvV Oq follows.

1(b)iv. We have z IF O(p V ©q) iff there is some y with R(z,y) and y IF
pV ©q. This can be realized. For example, choose and y to be the
worlds b and c, respectively.

4(b). e We seek a model in which p — OCq is true. By definition, we
seek a model in which all its worlds satisfy p — OCq. Certainly,
any model in which no world satisfies p would do. (Why?) More
interestingly, consider the figure below.

90

Modal logics and agents 91

c

>
°/

The world b satisfies p — O<g, since ¢ | p. For the worlds a and
¢, we have a I p and ¢ IF p, so we need to secure a IF OOg and
¢ IF O0Oq. But this can be done, since all three worlds, z, of this
model have an immediate successor state, =/, such that z’ IF q.
(Why does this imply what we require, and what choices of z' for
z would you make?)

e We seek a model in which p — OCq is not true. By definition,
we seek a model in which not every world satisfies p — O<Cq. The
model in Figure 5.5 of the textbook qualifies, for a If p — OOq.
(Why?)

5(d). The relation z IF O(p A ¢) means that there is a world y with R(z,y)
and y IF p A g. On the other hand, z IF Op A ¢g means that there
are worlds 3’ and 3" with

R(z,y') and ¢/ IFp
R(z,y") and ¢y" I q.

With that in mind, it is relatively easy to find a model which distin-
guishes these two formulas:

Note that a If O(p A q), whereas a IF Op A Oq.

92 Modal logics and agents

5(f).(i) First, we have z IF O(pV q) iff there is a world y with R(z,y) and
ylFpVgq. But then ylFpor yl-q.
Case 1: If y IF p, then z IF Op, and so z IF Op Vv Og follows.

Case 2: If y I g, we argue in the symmetric way: z I <g, and so
z IF Op Vv Og follows.

(ii) Second, if we have z IF Op V Og, then we have z IF p, or p IF Og,
not necessarily exclusive.

Case 1: If z I ©p, then there exists a world ¢’ with R(z,y’) and y IF p.
This implies ¢’ IF pV ¢, and so z I+ O(p V q) follows as R(z,y').

Case 2: Symmetrically, if z |- <g, then there exists a world y” with
R(z,y") and y IF g. This implies ¢ IF pV g, and so z I+ O(pV q)
follows as R(z,y").

6(a). To show that O(¢ A1) <> (O¢ A Oe) is valid is suffices to show that
z Ik O(¢p A1) implies z IF O¢ A O, and vice versa, where z is any
world of any model. (Why?)

(i) If z IF O(¢p A, then R(z,y) implies y IF ¢ A1), and so y IF ¢ and
y I 1 follow. Since y is an arbitrary element with R(z,y), we
conclude z I+ O¢ and z I O, and so x IF O¢ A O follows.

(ii) Conversely, if z IF O¢p A O, we infer z IF O¢ and z |- 0. If y is
any element with R(z,y), then z I O¢ implies y IF ¢, and z I+ O
implies y I 1. Therefore, y IF ¢ A1 holds. Since y is an arbitrary
element with R(z,y), we infer that x IF O(¢ A) holds.

(Why is the argument above still valid if there is no y with R(z,y)?)

6(c). As in item 8(a), it suffices to show that z |- OT implies z |- T, and
vice versa, where z is any world of any model.

(i) If z IF OT, then z IF T holds, since the latter holds simply by the
definition of I+.

(ii) If z IF T, then we have y IF T for all y with R(z,y), since we have
y IF T for all worlds y, by definition of I-. Thus, z IF OT is proved.

EXERCISES 5.3 (p.351)

1(a). We interpret the formula (¢ — O¢) — (¢ — O¢) according to the
interpretations of O and < in Tables 5.7 and 5.6.
(i) It is necessarily true that ¢: The formula says

“If ¢’s truth implies that ¢ is necessarily true, then ¢’s truth implies
that ¢ is possibly true.”

This should be valid.

(i)

(iii)

(vi)

Modal logics and agents 93

It will always be true that ¢: The formula says

“If ¢’s truth implies that ¢ is always true, then ¢’s truth implies that ¢
is true sometimes in the future.”

This should be valid.

It ought to be that ¢: The formula says

“If ¢’s truth implies that ¢ ought to be true, then ¢’s truth implies that
it is permitted that ¢ (is true).”

This may be contested by some, but should generally be valid.
Agent @) believes that ¢: The formula says

“If ¢’s truth implies that agent Q) believes ¢, then ¢’s truth implies that
¢ is consistent with)’s beliefs.”

This should be valid, provided that agent () values consistency of
beliefs.

Agent () knows that ¢: The formula says

“If ¢@’s truth implies that agent) knows that ¢, then ¢’s truth implies
that ¢ is true, for all agent @ knows.”

This should be valid.

After any execution of program P, ¢ holds: The formula says

“If ¢’s truth implies that, after any execution of program P, ¢ holds,
then ¢’s truth implies that ¢ holds after some execution of program P.

This should clearly be valid.

2(a) We have [£ —=(P)-¢ iff we have | ¥ (P)—¢ iff (it is not the case
that some execution beginning in store [terminates in a state satis-
fying —¢) iff (all executions beginning in state [terminates in a state
satisfying ¢ or don’t terminate at all).

3(a).

For natural numbers n,m > 1, we have R(n,m) iff n < m. For

example, 2 < 5, but 5 £ 2.

R is not reflexive, since n £ n for any n > 1.

R is not symmetric, since n < m implies m £ n.

R is serial, since for each n > 1 there is some m, for example
mEn+ 1, such that n < m.

R is transitive, since n < m and m < k clearly imply n < k.

R is not Euclidean; otherwise n < m and n < k would always
imply m < k, but this is not the case. For example, we have
3 <11 and 3 < 5, but 11 £ 5.

R is not functional, since, e.g., we have 2 < 4 and 2 < 5 with 4
and 5 being distinct elements.

94 Modal logics and agents

e R is linear, since n > m and n < k always imply that m and k are
equal, or kK < m, or m < k.

e R is not total; otherwise, we would have n < m or m < n for all
n,m > 1, but this is not the case when n equals m.

e R is not an equivalence relation, since we saw above that it is
neither reflexive, nor symmetric.

3(d) This is very similar to the previous solution in its methodology but
some of the cases are a bit trickier.

o To see whether R is reflexive we need to check that for all real
numbers z there are positive numbers a and b such that x = a-z+b.
This cannot be for £ = 0 as b has to be positive.

e This relation is transitive. For if a, b, ¢, d are positive real numbers
withz =a-y+band y =c-2z+d, thena-c and a-d+ b are
positive as welland z = a-c-z+ (a-d+b).

e This is clearly not functions, e.g. 2 equals 1 -1+ ¢ and also equals
2-0.5+1.

e Etc.

4. Let R be a reflexive, transitive and Euclidean relation. We need to
show that R is an equivalence relation. Since R is already reflexive
and transitive, it suffices to show that R is symmetric. To that end,
assume that R(a,b). We have to show that R(b,a) holds as well.
Since R is Euclidean, we have that R(z,y) and R(z, z) imply R(y, z)
for all choices of x, y and z. So if we instantiate this with z & a,
y & band z ¥ 4, then we have R(z,y) by assumption (as R(a,b)),
but we also have R(z, z) since R is reflexive (so R(a,a) holds). Using
that R is Euclidean, we obtain R(y,z) which is R(b,a) as desired.
Notice that this local argument made no use of the transitivity of R.
(Why and where does the global argument use this transitivity?)

9(a) This is not valid in intuitionistic propositional logic. Consider a model
with three worlds z, y, and z such that L(z) = {}, L(y) = {p}, and
L(z) = {q}. Further, let R(z,y) and R(z, z) be the only non-reflexive
instances of R. Note that L is monotone with respect to R. Then
z If p — g since y is accessible by = and p — ¢ does not hold at .
Similarly, z | ¢ — r since z is accessible from z and does not satisfy
q—r.

9(f) This is intuitionistically valid. There is an obvious proof that involves
only the proof rules —i and —e and these proof rules are intuitionis-
tically valid.

Modal logics and agents 95

11(b). Let O¢ mean that “agent @ believes ¢”. Then the formula scheme
O¢ V O-¢ means
“For any formula ¢, agent @) either believes ¢, or she believes —¢.”

13(a). Reading O¢ as “agent @ knows ¢”, we read R(z,y) as “y could be
the actual world according to agent)’s knowledge at z”.

(i)

R should indeed be symmetric. Suppose R(z,y), but not R(y, z).
Then, as far as @Q’s knowledge at z is concerned, y could be the
actual world, but his knowledge at y rules out the possibility of
z being the actual world. Therefore, at y he knows something
preventing z from being actual; so at he knows he knows some-
thing preventing z from being actual. Therefore, he (simply)
knows something preventing x being actual, i.e. he knows some-
thing which is false. This contradicts our model of knowledge.

The totality of R means that for all worlds z and y we have R(z,y)
or R(y,z). But z and y may contain mutually exclusive knowledge
(e.g. agent @ may know all prime ministers of Canada at world
z, but fail to remember some of them at world y). In that case,
neither R(z,y) nor R(y,x) are valid, so R is not total in general.

13(c). Let O¢ model “always in the future, ¢ holds”. Note that R(z,y)
here means “y is in the future of z”.

Whether R is reflexive, or not, depends on whether the present is
part of the future (only then is R reflexive).

R is not symmetric, since there is no symmetry between the past
and the future.

Assuming that time does not halt, R should be serial: each point
in time, z, has some future point, y.

R is transitive: if y is in the future of x and z in the future of y,
then z is in the future of x as well.

R is not Euclidean; for example, if x is the year 2005 and y & 2031,
z & 2012, then y and z are in the future of z, but z is not a future
of y.

Assuming that time goes on without end, R is not functional, for
each point in time will have many distinct future points in time.
Assuming the ordinary notion of time, namely that future points
are either identical, or one occurs prior to the other, the relation
R is linear.

Whether R is total, or not, depends on the answer to the question
whether the present is part of the future (only then is R total).
R is not an equivalence relation since it is not symmetric.

96 Modal logics and agents

16(b). A frame F = (W, R) satisfies OL iff each world w € W satisfies
this formula. (Why don’t we have to consider labelling functions
here?) But w IF OL holds iff there is no w' with R(w,w'), for L is
satisfied by no world whatsoever. Thus, O corresponds to R being
the empty relation (= no two worlds are related).

16(c). <O¢ — OO¢ corresponds to weakly directed: if R(x,y) and R(z, z),
then there exists a point u such that R(y,u) and R(z,u). The proof
of this is in similar style to Theorem 5.13.

17. We seek a formula scheme ¢ which corresponds to density: for all
z,z € W, there exists some z € W with R(z,y) and R(y,z). We
claim that

Op = OOP

is such a formula scheme.

(i) Let F = (W, R) be a frame which satisfies O¢p — OO Suppose
that R(z,z) holds. Let L be any labelling function with respect
to which we have z I p, but w | ¢ for any other world. Then
z I O¢ as R(z, z). Since the frame satisfies O¢ — OO we obtain
that z IF OGO¢ holds. Thus, there is some y € W with R(z,y) and
y Ik ©¢. But the latter can only mean R(y,z) due to the choice
of our labelling function L. Thus, R is dense.

(ii) Let F = (W, R) be a frame such that R is dense. Let x € W be
given. We need to show that = IF G¢ — &GO holds for any choice
of labelling function L. This is certainly the case if x If O¢. But
if z IF ¢, then there has to exist a world, z, such that R(z, z)
and z |- ¢. By density of R, R(z,z) implies the existence of some
world y with R(z,y) and R(y, z). Since z IF ¢, the relation R(y, z)
implies y IF &¢. But the latter guarantees z IF OO¢ as R(z,y)
holds.

EXERCISES 5.4 (p.353)

Modal logics and agents 97
1(a). We prove the validity of O(p — q) Fx Op — Og by

O(p — q) prem

Op ass
T pTTTTTTTTT e 2™
| pP—q Oel |
L q_ . - @_4_,_3_5

Og 0i 3—5

Op —0Og —i2—6
1(c). We prove the validity of Fx O(p — ¢) AO(¢q = r) — O(p — r) by

Op—=q) AO(g—r) ass

O — q) Ner 1

O(q =) Neg 1
i D ass i
i p—q Oe 2 i
i q —e 6,5 i
i q—r Oe 3 i
i T —e 8,7 i
P 259

O(p —) 0i 4—10

Op—9) AO(g—r)—>0p-—r) —il-11

We left line 4 empty since our macros for producing boxes otherwise
causes the two boxes to overlap; we will use this “hack” in subsequent
examples as well.

98 Modal logics and agents
1(f). We prove the validity of G(p — ¢q) Fx Op — Og by

-O-(p — ¢) prem

Op ass

O—q ass
i P—q ass i
i P Oe 2 i
i q —e5,6|!
i g Oe 3 i
i L -e7,8 i
_opoag) =i59)

O-(p—¢q) 0i4-10

1 -e 11,1

~O—q —i3-12

Op —» -0O-q —i2-13

2(c). We prove the validity of Fxr4s OOp <> Op by proving Fgras
OOp — Op and Fxrgs Op — OOp separately:

(i) We prove the validity of Fgr4s ¢Op — Op by

=T=TTp ass
O-0-0p 51
i =p ass i
i O-0Op 54 |
i ~O-0p De 2 :
i L -e 5,6 i
 op RAA 4-7 |
. p_ T8& |
Op Oi 3-9

—||:|—|Dp—) Dp —e 1-10

Modal logics and agents 99

Notice that this half of the equivalence did not need axiom 4, so
we actually proved the stronger Fxrs COp — Op.
(i) We prove the validity of FxT4s5 Op — <OOp by

Op ass
O=0p ass
-Op T2

1 -el,3
-0O-0p —i2—4

Op —-0-0Op —il-5H

Since this proof also never required the axiom 4, we conclude that
the equivalence between Op and ¢Op holds already with respect
to KT5.

EXERCISES 5.5 (p.354)

3(0) Klp V Kgq.

3(g). KiKap.

3(k). (KipAKi1—q)V (KopAKo—q)V---V (KppAKyp—q), where the agents
are numbered from 1 to n.

4(d). By definition of E, the relation z I E(p V q) holds iff z I K;(p V
q) NKa(pV q) NKs(pV q) is true. For all i = 1,2,3, we have that
R;(z3,w) implies w € {z1,z2}. But since z1 IF pV ¢ and x5 IF pV g,
we infer that z I E(p V q) indeed holds.

4(i). By definition of C, we have zg |- C—q iff z¢ IF E¥—q holds for each
k=1,2,..., where E¥ is EE... E (k times).

(i) Now g I+ E'=q simply means zg |- K1—g A Ko—q A K3—q. The
latter holds since, for 7 = 1,2, 3, the relation R;(xg,w) implies that
w equals z5; and we do have x5 IF —q.
(ii) We have zg I E%2—gq iff we have zg IF K1 E—~q A KoE—q A K3E—q.
As in (i), we see that this amounts to checking whether x5 satisfies
a certain formula, but this time it is £F—q and not —q. However,
x5 I E—q fails to hold. For example, we have Ry(zs,z4), but
x4 I —q since z4 IF g.
Therefore, we infer z¢ If E2—q, and from that zg [C—q follows.
6. o Let x be any world in any model of KT45. To show z IF Cg¢ —
CaCy9, it suffices to assume x I Cg¢ and show x IF CgCg¢. The
latter is shown if we can prove that z I+ ELCg¢ for any | < 1.

100

Modal logics and agents

We make use of the second part of Theorem 5.26. Thus, if y is
any world which is G-reachable from z within [steps, we have to
argue that y IF Cg¢, i.e. y I Eéqﬁ for all £ > 1. Fix any k£ > 1. If
z is G-reachable from y within k steps, we are done if z IF ¢. But
since y is G-reachable from z within [steps, we conclude that z is
G-reachable from z within [+ &k steps. But then our assumption
that = IF Cq¢ implies z I E5 ¢ which renders z IF ¢. Thus,
Ca¢p — CgCy¢ is valid in KT45.

To show that -Cg¢ — Cg—Cg¢ is valid in KT45, it suffices to
consider an arbitrary world z in an arbitrary model of KT45 such
that z IF -Cg¢. We then only have to show that z IF Cg—~Cg¢
follows. We make crucial use of the second part of Theorem 5.26,
and apply proof by contradiction: Assume that z | Ca—Cg¢. By
Theorem 5.26, there exists a world y which is G-reachable by z
such that y If =Cg¢, i.e. y IF Cgép. Since G is non-empty (what
does =Cg¢p — Cg—Ca¢ mean if G is empty, and why it is then
valid?), we know that the relation

U R; (5.1)
1€G
is an equivalence relation (see the discussion in the textbook after
Theorem 5.26). But then z and y are related via this equivalence
relation and one satisfies C'g¢, whereas the other one does not.
This is a contradiction. (Why?)

10(c). Again, we prove this via showing two separate implications.

(i) We prove Cp — K;C, by

Cp ass
CCp ca1
ECp CE 2
K,Cp EK; 3

Cp—KiCp —il-4

(ii) This follows simply by the rule KT.

10(e). The formula scheme —¢ — K;—K;¢ means

“If ¢ is false, then agent ¢ knows that he does not know ¢.”

Modal logics and agents 101

Here is a proof:

¢ ass
K¢ ass

¢ KT 2
1 -e 3,1
-K;¢ —i2—4
K,—K;¢ K55

¢ = K;-K;¢p —il1—6

10(g) e The proof strategy for showing the validity of ~K1—-K1¢ — K¢
is to use proof by contradiction with =K ¢ as an assumption which
then renders K1~ K ¢ by K4 applied to agent 1 and so L can be
inferred.

e The other direction is reasoned in a similar way: use proof by
contradiction and assume K;-K;¢ which is demoted to = K¢ by
KT applied to agent 1 and so L can be inferred.

6

Binary decision diagrams

EXERCISES 6.1 (p.398)

3. If we identify p and ¢ with = and y, respectively, then there are infinitely
many boolean formulas f(z,y) in terms of -, +, -, 0 and 1 such that
f has a truth table corresponding to the one for p — ¢. For example,

f@y) ET+y
is one such formula and
fzy) €242 5+0+2

is yet another.

EXERCISES 6.2 (p.398)

1. If we swap the dashed and solid lines in the binary decision tree of
Figure 6.2, we obtain the binary decision tree

102

Binary decision diagrams 103

A truth table corresponding to this binary decision tree is

z y| flz,y)
1 1] 1
01| o
10| 0
00| o

A formula with this truth table is f(z,y) &' 2.y, which corresponds
to “logical and”.
2. The solution depends on

(i) whether we actually impose an ordering on p, ¢ and r as we con-
struct the binary decision tree;
(ii) and, if so, what ordering we would actually choose.

We choose an ordering, namely the obvious one of “p before ¢ before
r”. The resulting binary decision tree is

o] [o] 3] I

Note that the truth values of ¢, read downwards in the table, corre-
spond to the leaf values of the binary decision tree, if read from the
left to the right.

EXERCISES 6.3 (p.399)

1. Let B be any BDD. We appeal to Definition 6.3 which also is meant to
apply to BDDs.

(i) In that Definition we see that, in order to evaluate the BDD B as a
boolean function, we take its argument which uniquely determines
a path along B and the result is the value of the leaf node it
reaches. So if we redirect edges to identical leaf nodes, this cannot
change the value computed in this manner.

104 Binary decision diagrams

(ii) Suppose that both outgoing edges of node n point to the same
node m. Then any evaluation path of B which passes through
node n has to pass through node m, independent of the value of
n’s label. Thus, we may savely redirect incoming edges of n to
m without changing the leaf nodes that one could reach on such
paths

(iii) Structurally identical BDDs clearly induce the same boolean func-
tion. So if we redirect all incoming edges of the root node of one
BDD to the root node of an identical one, this cannot change the
value of leaf nodes that are reached by given arguments.

2(a).
z y z|f(zy)
1 11 1
110 1
1 01 1
011 1
100 0
010 1
0 01 0
0 00 0

EXERCISES 6.4 (p.400)

1(a). First, we use the truth table of item 2(a) in Exercises 6.3 to construct
the binary decision tree for it:

WD oe N

Second, we apply the reductions C1-C3 to this tree until a reduced
BDD is found. Two z-nodes perform a redundant test on 1 and are
themselves redundant non-terminals. Thus, these two nodes may be

replaced with a leaf node for 1. We also remove duplicate terminal
and obtain

Binary decision diagrams 105

Next, we remove the remaining redundant test for one z-node and
get

This BDD is reduced.
3(b). A binary decision tree for f(z,y) &' 2 +yin the ordering [z, vy, 2] is

106 Binary decision diagrams

We immediately see that all z-nodes are redundant tests, so they
may all be eliminated. Further, the rightmost y-node is a redundant
non-terminal, so we get

which is reduced.
3(d). The binary decision tree for f(z,y,2) = (z @ y) - (T + 2) in the
ordering [z,vy, 2] is

WD 0E 0o

Three z-nodes are redundant tests and we may share two which are
identical. In conjunction with the removal of duplicate terminals,

this gives us

which is reduced.

Binary decision diagrams 107

EXERCISES 6.5 (p.401)

6(a).
1 x2 x3 x4 | f(T1,T0,23,74)
0O 0 0 O 1
0O 1 0 O 0
1 0 0 O 0
1 1 0 0 1
0O 0 0 1 0
0O 1 0 1 1
1 0 0 1 1
1 1 0 1 0
0O 0 1 O 0
0 1 1 0 1
1 0 1 0 1
1 1 1 0 0
0O 0 1 1 1
0 1 1 1 0
1 0 1 1 0
1 1 1 1 1

6(b). We proceed as in Chapter 1 (see the discussion after Proposition 1.45):

(x1 + T2+ x3+ 24) - (T1 + 22 + T3+ 4) -

(x1+z2+ 23+ T4) - (T1 + T2 + 23+ T4) -

(21 + To + T3 + 24) - (T1 + To + Ty + 74) -

(21 +To + T3 + T4) - (T1 + o + T3 + T4).
6(c). In general, if we consider the even-bit parity function in n variables
(n = 4 in item 6(a) and 6(b)), then the OBDD corresponding to
Figure 6.11 has 2n + 1 nodes. The corresponding conjunctive nor-

malform, however, has 2"~! many conjuncts, unacceptable for even
moderate values of n.

EXERCISES 6.6 (p.402)
1(c). The BDD

108 Binary decision diagrams

#0 L #1

is the resulting reduced OBDD with unique labels.

EXERCISES 6.7 (p.402)

5. The expression f — (g, h) is a boolean function in three arguments (f,
g and h) which is equivalent to g if f evaluates to 1; otherwise, it is
equivalent to h.

(a) Using +, & and , we may define this as

f-g+7F-h
For if f evaluates to 1, the expression is equivalent to 1-g+1-h

which in turn is equivalent to g. Conversely, if f evaluates to 0,
then we get 0- g + 0+ h which is eqivalent to h.

(b) We set f, d:efﬁc — (flo(n),fhi(n))'

Binary decision diagrams 109

(¢) We use mathematical induction on the maximal number, [,, of
edges we need to reach a leaf node from node n.

— If I, = 1, then the outcoming edges of n point to leaf nodes. So
for fy being T — (fio(n), fhi(n)), We have fion), frin) € {0, 1}
Thus, f, is independent of any y, different from z, which occurs
before z in the ordering.

— We assume that the claim holds for all nodes m with [,,, < k. Let
n be a node such that [, = k+1. Then lj(,), lni(n) < k follow. By
our induction hypothesis, fio(,) and fyi(,) are independent from
any y, different from z, which occurs before x in the ordering.
But then f, is also independent of all such y as f, equals z —
(fio(n)» fni(n))-

10(a).(i) Let the boolean formula (f @ g) + ¢ be valid. If ¢ evaluates to
0, then that formula is equivalent to f @ g and since the former
is valid, we conclude that f @ g is valid as well. By the definition
of @ is means that f and g can never evaluate to the same value
for a given argument. Thus, f and g always evaluate to the same
value, i.e. they are equivalent.

(ii) Suppose that f and g are equivalent on all arguments for which
c evaluates to 0. If (f @ g) + c is not valid, then there is some
argument for which is evaluates to 0. But then ¢ evaluates to 0
as well. By our assumption, f and g then evaluate to the same
value, but this contradicts the fact that f @ g evaluates to 0.

10(b). We first apply @ to By [note: the BDD for f] and By, yielding:

100

0@l 11 00 1@1100 0@l

Reducing, we obtain:

110 Binary decision diagrams

Now apply + to B. and this BDD, resulting in:

0+1 140 0+1

G+1 140

We find that this reduces to the constant BDD 1.

EXERCISES 6.8 (p.404)
1(b). The reduced OBDD for f[1/z] is

1(d). The reduced OBDD for f[0/z] is the one which represents the func-
tion y, since we remove the top z-node and keep the left, reduced,
subOBDD.

2(a). The expression f =7 - f[g/z] + = - f[g/z] does it.

2(b). Replacing a node n, labelled with z, with the BDD for g will almost
always be inconsistent with the chosen global variable ordering.

Binary decision diagrams 111

2(c). The expression g — (f[1/z], f[0/z]) is equivalent to f[g/z] and can be
implemented via the operator described in item 5(a) of Exercises 6.7.

EXERCISES 6.9 (p.405)

3(a).(i) Let ¢ be satisfiable. Then there is a valuation p such that ¢
evaluates to 1 with respect to p. Since

Jz.¢ = $[0/] + $[1/x]

we infer that 3z.¢ evaluates to 1 as well under p, for the latter has
to assign 0 or 1 to z.
(ii) Let 3z.¢ be satisfiable. Then there exists a valuation p’ such that
#[0/x] + ¢[1/z] evaluates to 1 with respect to p'.
Case 1: If ¢[0/z] computes to 1 under p’, then ¢ computes to 1 under
p'[z + 0], where p'[z — 0] behaves like p', but that it assigns 0
to x.
Case 2: If ¢[1/z] computes to 1 under p’, then ¢ computes to 1 under
p'[z — 1], where p'[z — 1] behaves like p', but that it assigns 1
to x.
Since at least one of these cases has to apply (why?), this concludes
the argument.

EXERCISES 6.11 (p.407)

1.(i) We identify the subset of states {sg,s1} with the boolean function
z1 - T2 + 1 - T2 whose reduced OBDD with the ordering [z, z2] is

o

(ii) The set {sg,s2} corresponds to z1 - 9 + T1 - To whose reduced
OBDD with the ordering [z1,z2] is

112 Binary decision diagrams

EXERCISES 6.13 (p.408)
1(a). (Bonus) The transition function of this circuit is
(z} < T1) - (zh ¢ 71 © T2).

Notice the this describes a determinstic system. If we start this off
in the state 01, the system evolves as in

OHOHO‘E

at which point it finished a full cycle. Thus, this implements a
counter “modulo 4”.
1(b). (Bonus) The CTL model is given by

@ 2
S0 $1
S3 H | S92

EXERCISES 6.14 (p.409)

2.(i) If m = 0, then 1yZ.Z % 1 ensures p E 1y Z.Z by the definition of k.
(ii) If p F vpZ.Z, then we also get p F vyy12.Z, for vy 1 2.7 is
defined to be Z[v,, Z.Z/Z] which is just v, Z.Z again.
(Can you argue that v, Z.Z equals 1 for all m > 07)

Binary decision diagrams 113
EXERCISES 6.15 (p.410)

8(a). The function fFX(#1A772 ig defined as 32'.(f - 712722 := 2'] which
equals 3%".((z] ¢ T1) - (24 > 1 ® z2) - (2] - TY)).

8(c). The function fAGAF=21A722) should compute 1 exactly for those
states s which satisfy the CTL formula AG (AF —z; A -z2). The
latter formula says, at state s, that -z A =z is true infinitely often
on all computation paths that begin in s. But this -z A =z is true
exactly at state so, this formula is satisfied by all states, for each
infinite path has to pass through s infinitely often. Thus, we may
choose as boolean formula without foxed points simply 1.

EXERCISES 6.16 (p.411)

1. (Bonus) In Equation (6.27), the function fE¢G? is defined in terms of
checkEX and checkEU, but these two patterns are defined in a way
which does not depend in fair (see the Equations (6.25) and (6.26)).

