
CS202A Assignment 1 Solutions

Q2

(a) Following are the proof rules derived in a straightforward way from
the rules of ND whose name appears on the right.

1. Γ1`φ Γ2`ψ
Γ1∪Γ2`φ∧ψ ∧ i

2. Γ`φ1∧φ2
Γ`φ1 ∧ e1 Γ`φ1∧φ2

Γ`φ2 ∧ e2

3. Γ`φ
Γ`φ∨ψ ∧ i1

Γ`ψ
Γ`φ∨ψ ∧ i2

4. Γ1,φ`χ Γ2,ψ`χ
Γ1∪Γ2,φ∨ψ`χ ∨ e

5. Γ,φ`ψ
Γ`φ→ψ → i Γ1`φ Γ2`φ→ψ

Γ1,Γ2`ψ → e

6. Γ,φ`⊥
Γ`¬φ ∧ ¬i

Γ1`φ Γ2`¬φ
Γ1∪Γ2`⊥ ¬e

7. Γ`⊥
Γ`φ ⊥e

Γ`¬¬φ
Γ`φ ¬¬e

(b) No boxes are needed in proofs in the sequent system. Any assumption
with which a box starts in ND is now added on the leftside of the
sequent. Closing of the box corresponds to removing the assumption
from the leftside using the corresponding rule in the sequent system.

(c) Given below is a proof of p ∨ ¬p in tree form in the system of part (a).

1

p ` p axiom
−−−−−−− ∨ i1
p ` p ∨ ¬p ¬(p ∨ ¬p) ` ¬(p ∨ ¬p) axiom

−−−−−−−−−−−−−−−−−−−−−−−−−−−¬e
p,¬(p ∨ ¬p) ` ⊥

−−−−−−−−−−−−−−− ¬i
¬(p ∨ ¬p) ` ¬p

−−−−−−−−−−− ∨ i2
¬(p ∨ ¬p) ` p ∨ ¬p ¬(p ∨ ¬p) ` ¬(p ∨ ¬p) axiom

−−−−−−−−−−−−−−−−−−−−−−−−−−−− ¬e
¬(p ∨ ¬p) ` ⊥

−−−−−−−−−− ¬i
` ¬¬(p ∨ ¬p)

−−−−−−−−−− ¬¬e
` p ∨ ¬p

(d) p ` q → p does not seem derivable from rules in part (a). Its proof in
ND uses copy rule (see page 20 in the book). We have not translated
copy rule of ND into any sequent rule. It can be translated as follows.

Γ`φ
Γ∪Γ′`φ weakening

This rule is called weakening as it introduces more assumptions in an-
tecedent of the sequent to derive the same conclusion.

Using weakening, proof of p ` q → p can be given as follows.

p ` p axiom
−−−−−−− weakening

p, q ` p
−−−−−−− → i
p ` q → p

Q3

(a) Given a set p1, . . . , pr of propositions,

formula φ ≡ (
∨r
i=1 pi) ∧

∧
1≤i<j≤r ¬(pi ∧ pj)

asserts that exactly one of p1, . . . , pr is true.

2

[Note that in propositional logic only binary ∧,∨ are allowed. Nota-
tions

∨r
i=1 and

∧
1≤i<j≤r are convenient abbreviations for a formula ex-

plicitly listing all disjuncts and conjuncts. Size of φ is therefore O(r2).
We continue to use such abbreviations below.]

• Let α ≡
∧
v∈V [Exactly one of p1

v, p
2
v, p

3
v and p

4
v is ture]

(α asserts that every vertex has exactly one color)

• β ≡
∧

(u,v)∈E
∧4
i=1 ¬(piu ∧ piv).

(β asserts that every edge has di�erent color at its end points)

It is easy to see that α ∧ β is satis�able i� G is 4 colorable.

Size of α ∧ β is O(n2).

(b) We de�ne variable pt,i for each t ∈ V and each i, 1 ≤ i ≤ n.

Intuitively pt,i is true if v is the ith vertex on path from u to v.

• Let α ≡
∧
t∈V

∧
1≤i<j≤n ¬(pt,i ∧ pt,j)

[α says that for any t ∈ V , pt,i is ture for at most one i].

• β ≡
∧
t∈V,t 6=v

∧n
i=1 (pt,i →

∨
(t,s)∈E ps,i+1)

[β roughly says that if a path does not end at v then it can be
extended].

• We let the desired formula be θ ≡ pu,1 ∧ α ∧ β.

Size of α is O(n3) and size of β is O(n · |E|), so the size of θ is O(n3).

Correctness proof:

• Let there be a simple path v1, v2, . . . , vk , where v1 = u and vk = v.
Set variables {pvi,i | i ∈ {1, . . . , k}} to true and all other variables
to false. It is easy to see that this assignment satis�es θ.

• Conversely, consider a valuation which satis�es θ. For convenience
let us use notation u = v1. If v 6= u then as pu,1 is true, by β there
is a vertex v2 adjacent to v1 such that pv2,2 is true.

Assume inductively that variables pv1,1, . . . , pvj ,j are true s.t.
v1, . . . , vj is a simple path in G and v does not occur on this path.
Then by β, there is a vertex vj+1 adjacent to vj s.t. pvj+1,j+1 is
true.

3

If vj+1 = vi for some i ∈ {1, . . . , j} then we have both pvi,i and
pvi,j+1 true. This contradicts α, so vj+1 is a vertex which is not al-
ready on path v1, . . . , vj. This shows the new path v1, . . . , vj, vj+1

to be a simple path.

So we see that there is a simple path starting at u s.t. either this
path ends in v or it can be extended to another simple path. As
a simple path can not be extended inde�nitely (it has at most n
vertices on it), it must eventually reach vertex v. This shows a
path from u to v. �

[Note: A simple path is one on which no vertex occurs more than once.]

Q4 Let S be the set of given clauses and let {q1, . . . qt} contain all atoms
occurring in S.

We de�ne new variables {p1, . . . pt} s.t. pi is true i� qi is false,
that is pi ↔ ¬qi.
Given clause Cr ≡ qi1 → qj1 ∨ qj2 ∨ . . . ∨ qjm ∈ S
we de�ne clause Dr as pj1 ∧ pj2

∧ . . . ∧ pjm → pi1

and let T = {Dr | Cr ∈ S}
Note that

qi1 → qj1 ∨ qj2 ∨ . . . ∨ qjm
⇔ ¬qi1 ∨ qj1 ∨ qj2 ∨ . . . ∨ qjm
⇔ pi1 ∨ ¬pj1 ∨ ¬pj2

∨ . . . ∨ ¬pjm
⇔ pi1 ∨ ¬(pj1 ∧ pj2

∧ . . . ∧ pjm)
⇔ pj1 ∧ pj2

∧ . . . ∧ pjm → pi1

Using the above equivalence, it is clear that S is satis�able i� T is
satis�able. Satisfying assignment for S (T) is obtained from T (S)
using equivalence pi ↔ ¬qi.
This e�ciently reduces the problem of checking satis�ability of S to
checking satis�ability of T . T is a set of Horn clauses for which we
have seen an e�cient algorithm to check satis�ability in class.

4

Q5 (a) Starting from any truth value assignment to some nodes, we can
extend the assignment to other nodes as far as possible or discover a
contradiction using DFS (depth �rst search) in linear time. Therefore
the �rst solver works in linear time.

Now consider the second solver. Suppose at some stage second solver
can't make progress by linear solver's strategy. We will upper bound the
number of steps needed to get permanent mark for some unlabeled node
by the second solver. For each unlabeled nodem second solver considers
at most two assignments (T and F). After guessing an assigment for m
it uses linear solver to mark all implied node. This take O(n) steps. The
number of unlabeled nodes is bounded by n, so total number of steps
needed to try labeling for each of them independently needs at most
O(n2) steps. Therefore from the current stage in at most O(n2) steps
an unlabeled node gets a permanent mark (or the algorithm halts for
example, if a satisfying assignment is found in the process or no stable
mark could be discovered etc.). As there are only n nodes to be marked
number of steps needed to mark all of them with permanent marks is
O(n3). Once every node has a permanent mark a local computation at
every node determines if the assignment is consistent or contradictory.

So the algorithm halts in O(n3) steps.

(b) Consider ¬(p1∧¬q1)∧¬(p2∧¬q2). Initial labeling of its DAG gives two
disjoint trees N1 and N2 representing p1∧¬q1 and p2∧¬q2 respectively
with roots of both these trees labeled F (draw the dag and see it).
To make progress cubic solver needs to guess labeling on an unlabeled
node. Now if the guessed node is in Ni then this will not result in any
unlabeled node in N3−i getting labeled. So this will always result in an
incomplete assignment. It is also easy to see that any such assignment
will not result in a contradiction and no node gets a permanent mark.
Hence cubic solver fails on this input.

(c) A Horn clause p1, . . . , pn → q translates to ¬((p1 ∧ . . . ∧ pn) ∧ ¬q).
Translation of a set of Horn clauses is a conjunction of such formu-
lae. Initial labeling for a DAG corresponding to such set gives trees
N1, . . . Nk with their roots labeled F and Ni representing i

th clause say,
(p1 ∧ . . . ∧ pn) ∧ ¬q. In a partcular case, if n = 0 then Ni is a tree rep-
resenting ¬q with root labeled F this immediately assigns truth value
T to q.

5

Also note that if all p1, . . . , pn get labeled T then in tree Ni representing
(p1∧ p2∧ . . .∧ pn)∧¬q, node for (p1∧ p2∧ . . .∧ pn) get labeled T using
rule ti several times. By rule fll, ¬q gets labeled F and by rule ¬f , q
gets labeled T .

If Horn clause p1, . . . , pn → is represented by tree Ni and if all p1, . . . , pn
get labeled T then a contradiction appears at the roof of Ni as the root
was already labeled F .

(Once again you may like to draw diagrams to see the above cases).

This shows that all steps of `Marking algorithm' for Horn clauses can
be simulated by linear solver. So if a given set of Horn clauses is
unsatis�able then linear SAT solver will discover a contradiction and
will output `unsatis�able'.

However SAT solver need not be able to �nd a satisfying assignment
when `Marking algorithm' halts declaring the input `satis�able'. This
can be seen from part (b), the formula exhibited there on which cubic
solver fails, is conjuction of Horn clauses p1 → q1 and p2 → q2. So cubic
SAT solver fails on any satis�able set of Horn clauses which contains a
pair of clauses at least as complex as p1 → q1 and p2 → q2. Note that
all p1, p2, q1, q2 are distinct atoms.

Satis�ability of any single Horn clause or of the set {p1 → q, p2 → q} or
of the set {p1, . . . pn → q1, p1, . . . pn → q2} can be detected by the cubic
solver.

���������x-x-x���������

6

