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This lecture will focus on probabilistic methods. This is used to prove the existence of a good structure
using probability. We will define a probability distribution over the set of structures. Then we prove that the
good event happens with positive probability, which implies that a good structure exists.

These ideas are best illustrated with the help of applications.

1 Ramsey numbers

Previously in class we proved that if we color the edges of K6 using blue or red color, then either there is a
blue K3 or a red K3 as a subgraph. Here Kn is the complete graph (every pair of vertices are connected) on
n vertices.

We can generalize the above concept and ask, are there complete graphs for which any 2-coloring gives
rise to either a blue Kk or a red Kl. It has been shown that there always exists n, s.t., any two coloring of
Kn will have a monochromatic blue Kk or monochromatic red Kl. The smallest such number n is called the
Ramsey number R(k, l).

It has been a big open question to find out the bounds on R(k, l). We will use probabilistic method to
give a lower bound on the diagonal Ramsey number R(k, k).

Call an edge coloring of Kn good, if there are no monochromatic Kk’s.
The idea would be to randomly color the edges of the graph Kn. If there is a positive probability (over the

random coloring) that none of the Kk subgraphs are monochromatic red or blue, then there exist a coloring
which is good.

We color every edge either red or blue independently with probability 1/2. There are in total
(
n
k

)
subgraphs

Kk for a Kn.

Exercise 1. A particular subgraph Kk is monochromatic with probability 21−(k
2).

Hint: Kk could be completely red or completely blue.
We have already proved that,

Pr(∪ni=1Ci) ≤
n∑

i=1

Pr(Ci).

So the total probability that any Kk is monochromatic is at most
(
n
k

)
21−(k

2). If this probability is less
than 1, then there is a positive probability that none of the Kk’s are monochromatic.

Since the probability was over random coloring, there exist a good coloring (such that no Kk’s are
monochromatic).

Theorem 1. If 21−(k
2)
(
n
k

)
is less than 1, then R(k, k) is lower bound by n.

To get an explicit lower bound, you can check that n =
⌈
2k/2

⌉
will satisfy the above equation.

The essential argument in the above proof is that the number of colorings are much higher than the total
number of graphs which have monochromatic Kk.

A counting argument for the above theorem can also be constructed (assignment problem). Actually, in
all our applications, a counting argument can always be given. But the probabilistic argument in general is
much simpler and easier to construct.



1.1 Probabilistic algorithm

One of the important thing to notice in a probabilistic method of proofs is that the proofs are non-
constructive. For the previous example, it means that we were only able to show existence of a coloring. This
proof does not construct the required coloring and hence is called non-constructive.

But suppose we choose n to be 1
2

⌈
2k/2

⌉
. Then the probability of having a monochromatic Kk is very

small. This shows that most of the random colorings will be good colorings.
This suggests a randomized algorithm. We take Kn and color the edges randomly. Because of the argument

above, with high probability we will get a good coloring.

2 Sum-free subsets

Let’s take another example. Given a set of integers S, S+S is defined as the subset of integers which contain
all possible sums of pair of elements in S.

S + S = {t : t = s1 + s2, s1, s2 ∈ S}

A set S is called sum-free if S does not contain any element of S + S.

Exercise 2. Construct a set of 10 elements which is sum-free. Construct a set of n elements which is sum-free.

Using probabilistic method, we will show that every large subset of integers contain a big enough subset
which is sum-free.

Theorem 2. For any subset S of n non-zero integers, There exist a subset of S which is sum-free and has
size more than n/3.

Proof. Suppose S = {s1, s2, · · · , sn}. The idea would be to map S to rS = {rs1, rs2, · · · , rsn} for a random
r. If some subset of rS is sum-free then the corresponding set in S will also be sum-free.

But taking r to be uniformly at random from Z is not feasible. First pick a prime p of the form 3k + 2,
such that, p is at least 3 times bigger than the absolute value of any element of S.

You will show in the assignment that there are infinite primes of the form 3k + 2. We will do the
calculations modulo p.

Notice that the set T = {k + 1, k + 2, · · · , 2k + 1} is a sum-free subset when we do addition modulo p.
For applying the probabilistic method, pick a random x and consider the set xS mod p = {xs1 mod p, xs2

mod p, · · · , xsn mod p}.

Exercise 3. Show that if we pick an x at random from 0, 1, · · · , p− 1 then xs1 is also random with uniform
probability.

Define a random variable Y which is the intersection size of xS mod p and T .
Using linearity of expectation,

E[Y ] =
∑
i

E[xsi mod p ∈ T ].

Exercise 4. Show that E[Y ] = |S|
3 .

This implies that there exist at least one x for which xS mod p ∩ T is of size at least |S|/3. Call that
particular x, x0. Then T ′ = x0S mod p∩T is sum-free when addition is considered modulo p (T is sum-free).
This implies that the pre-image in S which maps to T ′ is sum-free.

Exercise 5. Show that x−10 T ′ is sum-free with respect to addition over integers.

2



3 Using linearity of expectation

We have already discussed linearity of expectation. It is a simple result to prove, but has profound implica-
tions. Again, the importance of linearity lies in the fact that we can even take dependent random variables
and still decompose the expectation into components.

E[X + Y ] = E[X] + E[Y ].

for any two random variables X and Y .
Notice that we used linearity of expectation for the proof in the previous section. We will take some more

examples now.
First let us look at the example of Ramsey number in the light of expectation.
Suppose we color each edge of Kn uniformly at random with blue or red. Define T to be the random

variable which counts the number of monochromatic Kk in the coloring. We are interested in the expectation
of T .

Define Ti (for i from 1 to
(
n
k

)
) to be the random variable which assigns 1 if a particular Kk is monochro-

matic otherwise 0. Convince yourself that T =
∑

i Ti.

Note 1. The random variables Ti are dependent on each other.
Then,

E[T ] =
∑
i

E[Ti] =
∑
i

21−(k
2) =

(
n

k

)
21−(k

2).

If E[T ] < 1 then there exist a coloring which has less than or equal to E[T ] number of monochro-
matic Kk’s. Since number of monochromatic Kk’s is an integer, there exist a coloring for which number of
monochromatic Kk’s is zero.

Let’s take another example of probabilistic method which utilizes linearity of expectation.

Theorem 3. Given n unit vectors vi ∈ Rn, i ∈ [n], there always exists a bit string b ∈ {−1, 1}n, such that,∥∥∥∥∥∑
i

bivi

∥∥∥∥∥ ≤ √n.
Proof. Again, we will pick bi’s uniformly at random from {−1, 1} and calculate the expected value of N =

‖
∑

i bivi‖
2
.

From the definition of the length of a vector.

N = (
∑
i

bivi)
T (
∑
i

bivi) =
∑
i,j

bibjv
T
i vj .

Notice that vTi vj , the dot product between vi and vj , is a fixed number and the random variable are bi’s.
Hence,

E[N ] =
∑
i,j

E[bibj ]v
T
i vj .

By definition, we picked bi and bj independently. So bi and bj are independent if i 6= j. This implies that
E[bibj ] = E[bi]E[bj ].

Exercise 6. Show that E[bibj ] = 1, if i = j otherwise it is zero.

E[N ] =
∑
i

vTi vi = n.

This implies that there is a choice of bi’s for which length of
∑

i bivi is less than or equal to
√
n.
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Exercise 7. Given n unit vectors vi ∈ Rn, i ∈ [n], there always exists a bit string b ∈ {−1, 1}n, such that,∣∣∣∣∣∑
i

bivi

∣∣∣∣∣ ≥ √n.
4 Super concentrators

This construction is taken from [4].
A super concentrator is a directed acyclic graph G = (V,E), with n special input nodes I ⊂ V and n

output nodes O ⊂ V . It satisfies the property that for any 1 ≤ k ≤ n, any k subset of I is connected with
any other k subset of O with k disjoint paths.

This is a very strong connectivity property and can be used to design robust networks. It is very easy to
design a super-concentrator with O(n2) edges (exercise). We will see how can linear size (number of edges)
super-concentrators can be constructed.

We will do it recursively. But we first need concentrators.
A (n1, n2, u) concentrator has n1 input nodes, n2 output nodes. For any 1 ≤ k ≤ u input subset S, there

exists a k size output subset which is connected to S using k disjoint paths.

Exercise 8. In concentrators, number of input and output nodes could be different and there is an upper limit
on k size subset which we are allowed to choose. What is the other essential difference between concentrator
and super-concentrator?

For all j, we will first construct (6j, 4j, 3j) concentrator using probabilistic methods. Again the important
thing is that we can construct such concentrators in linear size. Though since concentrators have weaker
properties, it is less surprising than the linear construction of super-concentrators.

The concentrator is going to be a simple bipartite graph with 6j input nodes as one part and 4j output
nodes as other part. There will be no extra vertices. We will show that if we pick linear number of edges
randomly, with non-zero probability, there will be a graph which satisfies the properties of the concentrator.

Suppose every input node has out-degree 6 and every output node has in-degree 9 in our random graph.
Every edge is labelled from one side by the vertex and a number between 1 and 6, from other side by an
output vertex and a number between 1 and 9.

The random way to pick a graph is, for the first vertex v of input nodes and label 1 pick a partner (36j
choices). Then pick the partner for v, 2 and so on. Clearly there are (36j)! ways of doing that.

Say a non-concentrator is a graph where there exists a subset S of size ≤ 3j of input nodes whose
neighborhood is ≤ |S|. We need to find the number of non-concentrators in the random process described
above. We will show that it is less than (36j)!.

Exercise 9. Prove that if a graph is not a non-concentrator then it is a concentrator.

Hint: k disjoint paths in this case means a matching between k input and output nodes. Remember Hall’s
marriage theorem.

Note 2. We have taken a more stricter definition of non-concentrator then required. It is to help us in
calculations.

Theorem 4. The number of non-concentrators is less than (36j)!.

Proof. A non-concentrator has a subset S of input nodes with size k ≤ 3j, s.t., |N(S)| ≤ |S|. If this is the
case for an S,then N(S) is a subset of some k size subset of output nodes T .

For a particular k, there are
(
6j
k

)
ways to choose S and

(
4j
k

)
ways to choose T . Fixing S and T , there are

at most (9k)!
(3k)! (36j − 6k)! ways for N(S) ⊆ T .
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Since every vertex has at least 6 vertices in the neighborhood, we need to show,

3j∑
k=3

(
6j

k

)(
4j

k

)
(9k)!

(3k)!
(36j − 6k)! ≤ (36j)!.

It is enough to show,
3j∑
k=3

(
6j

k

)(
4j

k

)(
9k

6k

)
≤
(

36j

6k

)
. (1)

This will be proved in the assignment.

Given a concentrator, the task to construct a super concentrator is easy. We will first connect all input
nodes with one output node each creating a perfect matching of n edges. The remaining construction will
use the concentrators. From 6j input nodes we will use a concentrator to connect them to new 4j nodes.
Then put a super concentrator from these 4j nodes to next new 4j nodes. The final step is to connect the
final 4j nodes to 6j output nodes using a reverse concentrator.

Exercise 10. There are two ways to go to output nodes. Using the perfect matching or the concentrators.
For getting a super concentrator, prove that it is enough to show, for all 1 ≤ k ≤ 3j, any k input set is
connected to any k output set using concentrators with k disjoint paths.

Exercise 11. Show that for k ≤ 3j, any k input nodes are connected to any k output nodes with k disjoint
paths using concentrators.

This should convince you that we have a super-concentrator.

Exercise 12. Show that it has linear number of edges.

The construction of concentrators can be made deterministic. This is done using expander graphs. Inter-
ested students are advised to read more about expander graphs.

5 Assignment

Exercise 13. Give a counting argument for Thm. 1.

Exercise 14. Read about Stirling’s bound on factorial and binomial coefficients.

Exercise 15. Show that there are infinite primes of the form 3k + 2.

Exercise 16. Suppose a vertex v has deg(v) neighbors. Prove that the probability in a random permutation,
v comes before any of its neighbors is, 1

deg(v)+1 .

Exercise 17. Consider a graph G = (V,E). Show that G contains some independent set of size at least∑
v∈V

1
deg(v)+1 .

Hint: Consider all permutations of v1, v2, · · · , vn. Take the independent set by considering vertices in the
order of the permutation and once taken in the independent set, delete all its neighbors from the permutation.

Exercise 18. Let X be the random variable which counts the number of fixed points (i maps to i) in a
random permutation. What is the expected value of X.

Exercise 19. Prove Eq. 1.

Hint: First prove that
(
36j
6k

)
≥
(
6j
k

)(
4j
k

)(
26j
4k

)
using a simple combinatorial argument.
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