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In this lecture, we will take a look at various graph properties and constructs around them. Initially we
will discuss independent sets. The bulk of the discussion will be about properties like coloring, matching and
planarity.

1 Independent sets

Suppose we are given a graph where vertices correspond to students in the class and edges correspond to
friendships. What is the maximum number of students we can put in the exam room, if no two friends should
be in the room?

If no two friends are allowed to sit in the exam room, there will be no edges between the people sitting
in the exam room. This essentially defines the concept of an Independent set.

An independent set of a graph G = (V, E) is a subset S of vertices V. In this subset, no two elements
u,v of S have an edge between them, (u,v) ¢ E. It is also called a stable set. The stability number «(G) of
a graph G is the maximum possible size of an independent set in the graph.

Ezxercise 1. What is the stability number of the graph given below?

Fig. 1. Independent set in a graph. Is that the biggest possible?

We can also define an associated term, maximal independent set, as an independent set where adding any
other vertex will make the subset not independent.

Exercise 2. Construct a connected graph where there is a maximal independent set whose cardinality is
lesser than the stability number.

A clique S of a graph GG, on the other hand, is the subset of vertices where there is an edge between every
possible pair of vertices. In other words, G is a complete graph when restricted to the vertices of S.



We can define the complement of a graph G by taking edge (u,v) if and only if (u,v) is not an edge in

G. The complement of a graph G is denoted by G. So,
Es ={(u,v): (u,v) ¢ Eg}.
Ezercise 3. What are the number of edges in G if there are m edges and n vertices in G.

From the definitions, it is clear that an independent set in the graph is same as a clique in the complement
graph.

Another connected notion is of a verter cover. A vertex cover S is a subset of the vertex set, s.t., every
edge has at least one vertex in common with S.

Exercise 4. Show that S is a vertex cover iff V' — S is an independent set.

So finding the best vertex cover (minimum) is same as finding the best independent set (maximum).

It is easy to find an approximate vertex cover. We can take a greedy approach. Pick an edge (include
both the vertices of the edge in the vertex cover) and delete all the edges connected to it. In the remaining
graph, again pick an edge and so on. This algorithm gives a vertex cover which is at most twice the size of
the optimal vertex cover. You will prove that in the assignment.

We believe that finding the maximum independent set in a graph is a hard problem. If there is an efficient
algorithm for it then there will be efficient algorithms for large class of very interesting problems.

But finding an approximation algorithm for independent set is really hard. Convince yourself that the
if you take the approximation algorithm for vertex cover and take its complement. It need not be a good
independent set.

2 Coloring

Consider the following problem. For an examination, we need to put students in classrooms such that no
pair of friends sit in the same classroom. We are given the social graph of the class, with students as vertices
and edges representing friendships. How many minimum classrooms do we need for the examination?

For any valid assignment, assume that there is a distinct color for every classroom. Then assign a vertex
the color corresponding to its classroom. By this process, no two adjacent vertices will get the same color.
This is called a coloring of the graph.

More formally, given a graph G, a valid coloring (or just coloring) is a map from a set of colors to set of
vertices V, s.t., no two vertices of the same color are connected. The minimum number of colors needed to
have a valid coloring of a graph G is known as its chromatic number x(G).

The above question about examination classrooms can be reformulated as, what is the chromatic number
of the social graph. There are many other applications of coloring,

— Color the map of countries so that no two countries with shared border have the same color.
— Schedule the examinations so that no student has two exams in the same slot.

Ezxercise 5. Formulate all the above questions as graph coloring problems.
Ezercise 6. When can you color a cycle with just two colors?
For a graph coloring, the first thing to notice is that every color class (set of vertices with that color)

form an independent set. So a coloring is equivalent to partitioning the vertex set into disjoint independent
sets.

Theorem 1. Given a graph G with n vertices. Then a(G)x(G) > n.



Proof. Let’s say that the optimal coloring divides the vertex set V into color classes Vi, Vs, -+, Vi (x(G) = k).
That means two vertices in the same V; have same color and two vertices in different V;’s have different colors.
Then,

k
n=> [V
=1

But every V; is an independent set and hence |V;| < «(G) for all 4. So,
n < ka(G) < x(@)a(G).
Hence proved. O
Ezercise 7. Construct a connected graph with at least 6 vertices, s.t., x(G)a(G) = n.
An upper bound on chromatic number can be given by the degree.

Theorem 2. If G has maximum degree k, then x(G) < k+ 1. Moreover, if G is also connected and there is
at least one vertex with degree strictly less than k then x(G) < k.

Proof. We will first prove that k 4 1 colors suffice to color a graph with degree k. Let’s apply induction on
number of vertices in the graph. For the base case, clearly if the number of vertices are less than or equal to
k + 1 then graph can be colored with k£ + 1 colors.

For the general case, consider any particular vertex v. Say G’ be the graph obtained by deleting v and
all edges which include v. G’ has maximum degree k and has less number of vertices. So G’ can be colored
with k£ 4+ 1 colors.

Now consider the neighbors of v. There are k of them, pick the (k + 1)-th color for v. Hence G can be
colored with k£ + 1 colors.

For the Moreover part, we will again use induction. There exists a vertex with degree less than k, say v.
Remove v and all edges which include v. Suppose we get connected components Hy, Hy, -, Hg. All H;’s
have to be connected to v, since G is connected.

Exercise 8. At least one vertex in every H; has degree less than k.

Applying induction hypothesis on all H;’s we get a coloring for all of them. Since they are disconnected,
the entire coloring is consistent. Now there is at least one color remaining for v as there are at most k — 1

neighbors. Hence proved.
O

Ezercise 9. Construct a graph with maximum degree d which is not colorable using d colors.

3 Matching

Suppose you are the organizer of a friendly tennis tournament between India and Pakistan. You have been
provided with a graph with vertices as the participants. There are edges between the participants if there
is a match possible between them (the players have the same level). How many maximum matches can you
hold simultaneously?

This is a matching problem. You want to match participants in pairs so that all pairs are disjoint and
number of pairs are maximized. For the following discussion on matching, we will assume that the graph is
bipartite. The two set of vertices are denoted by X and Y, s.t., | X| < |Y|.

A matching M in a bipartite graph G = (X UY, E) is a subset of edges, s.t., no two edges share a vertex.
A mazimum matching is a matching M, s.t., for any matching N in G, |M]| > |N]|.

Ezercise 10. Is the matching shown by bold edges maximum? (Fig. ?7?)



Fig. 2. An alternating path. Thick edges are the edges of existing matching.

Suppose there is a path which starts from a non-matched vertex, alternates between a matched and a
non-matched edge and finishes at a non matched vertex. The path xo, Y2, z1,y4, €3, ¥ys is such an example.
By putting (x2,v1), (z1,94), (3,y5) in the matching and removing (x1,y2), (x3,y4) we can increase the size
of the matching.

An alternating path in a graph with a given matching M is a path,

— The first and the last vertex are not matched.
— The edges alternate between unmatched and matched edges.

You should convince yourself that if such a path exist then we can increase the size of matching. Even
the converse is true.

Theorem 3. A matching M is a maximum matching iff there are no alternating paths.

Proof. As noticed, if there is an alternating path then the matching is not maximum. We will now prove
that if the matching is not maximum then there is an alternating path.

Suppose M’ is the maximum matching. Consider the graph G’ which has only edges from M and M’
(if they share an edge, we will keep two edges from them). Clearly every vertex has degree at most 2. The
connected components in G’ will look like isolated vertex, cycle or paths.

Exercise 11. Prove that the only connected components where number of edges from M and M’ differ are,

— An alternating path for M. The number of edges from M are less than the number of edges from M’.
— An alternating path for M’. The number of edges from M’ are less than the number of edges from M.

Since the number of edges in M’ are more than the number of edges in M. At least one alternating
path for M will exist. Actually the number of alternating path for M will be greater than the number of
alternating path for M’, but it is sufficient for us to have one alternating path for M. O

Since |X| < |Y], if all vertices of X are included in M then it is called a complete matching. For the
above example, if there is a complete matching, then all participants (of Pakistan, their population is less)
can play at the same time with someone of their own level.

Though it is not necessary that a graph has a complete matching. You might notice that if there is an
isolated vertex (degree zero vertex) then there is no matching. The guess would be if all vertices have high
degree then there should be a complete matching.



Ezercise 12. Find a bipartite graph such that all degrees are higher than 3, which does not have a complete
matching. Show that 3 can be replaced by any constant.

Given a subset S of vertices X, define N(S) to be the set of vertices in Y adjacent to S.
NS)={ueY: JveX: (u,v)€E}.

The set N(5) is called the neighborhood of S. Suppose the cardinality of N(S) is smaller than |S| for a
graph G. Then we won’t be able to match every vertex in S. In other words, if there exists a subset S, s.t.,
|N(S)| < |S| then there is no complete matching. The condition that |[N(S)| > |S] is called Hall’s condition.

We would like to show that the converse is also true. That means, if Hall’s condition is true for every
subset then there is a complete matching. The idea would be to grow the matching if it is not complete. We
will finally show that if Hall’s conditions are satisfied then we can always grow the matching.

To show that Hall’s condition is sufficient for a perfect matching. We will show that if matching M is
not complete and Hall’s condition is satisfied, then alternating path for M exists.

Theorem 4. Hall’s theorem: Suppose there is a bipartite graph G = (XUY, E). There is a complete matching
in the graph G iff for all S C X, |N(S)| > |S].

Proof. Again, if there is a complete matching then the size of the neighborhood N(S) for any S C X has to
larger than or equal to the size of S.

For the opposite direction, suppose M is a maximum matching which is not complete. We will show the
existence of an alternating path.

Consider any vertex xo in X which is not matched. N({x¢}) will have at least one element, say y;. If y1
is not matched we are done else it is matched to x5. For the set {zg, 22}, again we can find a y3 which is
connected to either zy or z1 (not equal to y1). Continuing this way, we should reach a vertex y,. which is not
matched.

This can be traced back. ¥, is connected to some z;, x; to matching y; 1 and so on. This gives an
alternating path.

Yrs Tis Yi—1,T5,Yj—1," ", Zo-

But there can’t be an alternating path for a maximum matching by Thm. ??. This gives a contradiction.
O

Ezercise 13. Do we need the converse part of Thm. 7?7 for Hall’s theorem?

4 Planarity [

A planar representation of a graph G is a drawing of the graph on the piece of paper such that no two edges
intersect each other except at the end points. Take a look at two representations of the graph Kjy.

A graph G is called planar if it is has a planar representation. Notice that a planar graph can also have
non-planar representations. To show that a graph is planar, we can just show a planar representation. But
showing that a graph is non-planar takes a lot of effort. Let’s take an example.

Theorem 5. The graph K5 is non-planar.

Proof. Any planar drawing of a graph divides the plane into regions. Look at the following example of Kj.

In any planar drawing of the graph K3, pick 4 vertices and call them vy, vo, v3, v4. Since (v, ve), (ve, v3), (v, v4)
and (vg, v1) are all connected. They will divide the plane into two regions. We can call them inside and out-
side.

Case 1: v falls in the region inside. Then both the edges (v1,v3) and (va,v4) have to fall in the region
outside. But then they will have to cross each other.

Case 2: vs falls in the region outside. The proof in this case is similar and left as an exercise. O

! This section is taken from the book by Rosen [?].



Fig. 3. Two different representations of K4. Second one is planar.

R4

Fig. 4. Regions in a graph.

Ezxercise 14. Show that K3 5 is non-planar.

If a graph has K33 or K5 as subgraph, then it is non-planar. Surprisingly, it can be shown that a graph
is non-planar iff it has a subgraph which is derived from K33 or K5. We will not cover the meaning of the
term derived and the proof. Interested readers can look at Kuratowski’s Theorem.

Looking at the proof of Thm. 7?7, we were interested in different regions of the graph. Euler showed that
for a graph G, any planar representation have same number of regions and this number is related to vertices
and edges.

Theorem 6. FEuler’s Formula: Suppose we are given a connected graph G, thenm number of regions v in a
planar representation is m —n + 2. Here m is the number of edges and n is the number of vertices.

Proof. Let’s keep a particular planar representation of G in mind. We are going to construct this represen-
tation by adding one edge at a time. We will start with any single edge, call this basic graph Gj.

Given Gy, look at a new edge e (e ¢ Eg,) which has at least one vertex in G,. e exists at every step
because graph is connected. If both the endpoints of e are already in G, to obtain G,,+1, we just need to
draw the edge. Otherwise, to obtain G, 1, draw the edge and the additional vertex too.



Suppose 7, e, v, be the regions, edges and vertices respectively in the graph G,. We will show by
induction that r,, = e, — v,, + 2.

FExercise 15. Show the base case.

As mentioned above, there can be two case when adding a new edge e to G,,.

Case 1: Both vertices of e are already present in G,,. Then they should be in the same region (otherwise
there will be a crossing). By connecting those two vertices, we have divided the region into two regions. So
Tnt1 =Tn + 1,641 =€ + 1, 0,11 = v, and Euler’s formula holds.

Case 2: If only one vertex of e is present. In this case the new edge does not make a new region. So
Tntl = Tns€ntl = € + 1, U411 = v, + 1 and again Euler’s formula holds.

Fig. 5. Two different cases of adding an edge.

O

A very interesting fact is known about any planar graph. It can always be colored by 4 colors. This is
known as 4-color theorem and the proof of it required lot of effort. If you are interested please read more
about 4-color theorem.

5 Assignment

Ezercise 16. Find all graphs on 4 vertices which are isomorphic to their complement.

Exzercise 17. Prove that the vertex cover algorithm given in the notes gives a result which is at most twice
the size of the best vertex cover.

Ezercise 18. Define graph product of G; and G2 as the graph G; ® G2 with vertex set V; x V5. For the
edges, ((u,1), (v, 7)) is an edge in the product graph if,

(u=wv and (i,j) € Eg,) or ((u,v) € Eg, and i = j).
Show that G can be colored by ¢ colors iff a(G ® K}) = |Vg|.

Ezercise 19. What is the chromatic number of a bipartite graph with m vertices in one part and n vertices
in another?

Ezercise 20. Thm. 7?7 gives a greedy way to color the vertices of a graph. Write the pseudocode of an
algorithm which gives a d-coloring of a non-regular connected graph with maximum degree d.

Ezercise 21. Show that a complete matching always exists in a bipartite regular graph G = (X UY, E).

Ezercise 22. Prove that every tree is a planar graph. Hence, number of edges in a tree is |[V| — 1.



Ezxercise 23. The degree of a region in a planar representation is the number of edges on the boundary of
the region. For example, in the Fig. 7?7, R has degree 6, Ry, Ry have degree 3. Show that for a connected
planar graph,

2|E| =) deg(R).
R
Where the summation runs over all regions of the planar representation. Hence prove that,
|E| < 3|V]—6.

Note 1. It shows that, for a planar graph, the number of edges are linear in terms of the number of vertices.
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