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Combinatorial graphs provide a natural way to model connections between different objects. They are
very useful in depicting communication networks, social networks and many other kind of networks. For the
purpose of this course, graphs will mean combinatorial graphs as opposed to graphs of functions etc. which
you might have learnt previously.

Graphs have become such an important tool that a complete field, Graph Theory, is devoted to learning
about the properties of graphs. In the next few lectures we will learn learn about graphs, associated concepts
and and various properties of graphs.

1 Definition

A graph, G = (V,E), is described by a set of vertices V and edges E which represent the connection between
the vertices (E ⊆ V × V ). If (u, v) is an element in E then we say that vertex u is connected to vertex v.
We also say that u is adjacent to v. The vertex set of a graph G is represented by V (G) and the edge set by
E(G).

The graph is called simple if,

– there are no loops, i.e., no vertex is connected to itself,
– there is only one edge between any two vertices,
– if there is no direction assigned to the edges.

If there is a possibility of multiple edges between vertices then it is called a multigraph. If the edges are
assigned directions, i.e., (u, v) is ordered then it is called a directed graph as opposed to an undirected graph.
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Fig. 1. A simple graph

Graphs are used extensively in modelling social networks. The members of the social group are represented
by vertices and their relationship is modelled by the edges between them. If the graph depicts the friendships
between people, like Facebook, it is an undirected graph. If it has a relation which has direction (say a is
elder to b in a family), then this will be a directed graph.



Another example of a directed graph is how different processes are run on a computer. Suppose a process
a can be run only if process b is completed. This is called the precedence graph and a directed edge (u, v)
shows that u should run before v.

We will study undirected graphs in this course. Note that many of the concepts described below can be
studied for the directed version too.

A graph H = (V,E′) is called the subgraph of a graph G = (V,E) if the edge set E′ is a subset of the
edges E in G. In other words, some edges of G are not present in H, but every edge of H is present in G.

The degree of a vertex v in a graph G is the number of edges from v in G. The degree of a vertex can be
greater than |V | − 1. By double counting, we can easily prove the following theorem.

Theorem 1. The sum of the degrees of all the vertices in a graph is equal to twice the number of edges.

Proof. Left as an exercise.

One of the major problems in theoretical computer science is to figure out if two given graphs are
isomorphic. Two graphs, G and H, are called isomorphic if there exist a bijection π : V (G) → V (H), s.t.,
(u, v) ∈ E(G) if and only if (π(u), π(v)) ∈ E(H).
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Fig. 2. Are these two graphs isomorphic?

Exercise 1. Construct all possible non-isomorphic connected graphs on four vertices with at most 4 edges.

Exercise 2. Construct two graphs which have same degree set (set of all degrees) but are not isomorphic.

2 Paths and cycles

An important question in graph theory is of connectivity. Given a graph, can we reach from a source vertex
s to target vertex t using the edges of the graph?
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A walk of length k in a graph is a sequence of vertices x0, x1, · · · , xk, where any two consecutive vertices
are connected by an edge in the graph. In a walk, it is allowed to take an edge or a vertex multiple times.

If all the vertices in a walk are distinct, except possibly the first and the last vertex, then it is called a
path. In many places, paths are called simple paths and walks are called paths.

The path of length greater than two is called a cycle if the first and the last vertex are same.

Lemma 1. If there is a walk between two vertices in a graph then there is a path between them.

Proof. Consider the walk of least length, say P = {x0, x1, · · · , xk}. If all vertices are distinct then it is a
path, otherwise there is a vertex v which occurs twice in the walk. If we delete the portion of the walk
between the two occurrences of the vertex v, we still get a walk P ′ from x0 to xk.

But P was the smallest walk from x0 to xk, this is a contradiction.

Exercise 3. Show that if there is a walk with the same first and last vertex and no two consecutive edges
are the same, then there is a cycle in the graph.

A graph is called connected if there is a path between every pair of vertices of the graph. A graph can
always be divided into disjoint parts which are connected within themselves but not connected to each other.
These are called the connected components of the graph.

Exercise 4. Show that if there is path between a particular vertex v and every other vertex of the graph,
then the graph is connected.

3 Trees

A graph is called a tree if,

– It is connected,
– There are no cycles in the graph.

Tree is a special graph where every pair of vertices have a unique path between them. Let’s prove this
formally.

Theorem 2. A graph G is a tree iff there is a unique path between every pair of vertices in G.

Proof. If there is a unique path between every pair of vertices then the graph is connected. Suppose such a
graph has a cycle x0, x1, · · · , xk. Then there are two distinct paths between x0 and x1 (why?). So a graph
with unique path between every pair is a tree.

For the converse, In a tree, suppose there are two paths between vertices u and v. Say P = {u =
x0, x1, · · · , xk = v} and P ′ = {u = y0, y1, · · · , yk = v}. Let i be the first index, s.t., xi+1 6= yi+1. Similarly j
be the last index, s.t., xj−1 6= yj−1.

Exercise 5. Show that i and j exist and j − i ≥ 2.

Then consider the walk xi, xi+1, · · · , xj = yj , yj−1, · · · , yi+1, yi. This is a walk with first and last vertex
being same and no two consecutive edges are same. So there is a cycle in this tree. Contradiction.

Exercise 6. Show that if you remove any edge of a tree, you will get two disjoint connected components of
the graph.

You will prove in the assignment that a tree always has a vertex of degree one. Then using induction on
number of vertices, we can show that,

Theorem 3. A tree on n vertices has n− 1 edges.
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If a subgraph T of a graph G is a tree then T is called a spanning tree of the graph G. If the graph G is
connected, we can always construct a spanning tree. Define S0 to be the initial set containing a particular
vertex v. At every stage, construct Si+1 by including an edge which connects Si to some vertex not in Si.

Exercise 7. Why does this not create a cycle?

The process ends when Si has all the vertices of the graph. We can proceed with each stage (find a vertex
to add to Si) because the graph is connected.

Spanning trees are important in many applications. They are the smallest structure which preserve the
connectivity. If we assign weights/cost to every edge of the graph then we are mostly interested in minimum
weight spanning tree. You will study algorithms to find minimum weight spanning tree in a graph in future
courses.

4 Eulerian circuit and Hamiltonian cycle

A simple circuit is a walk where first and last point are the same and no edges are repeated. An Euler’s
circuit is a simple circuit which uses all possible edges of the graph.

Note 1. The vertices can be repeated
The definition of Euler circuits arose from the problem of Königsberg bridges.
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Fig. 3. Königsberg bridges and their graph representation. Dashed lines represent the bridges.

There are four regions connected with seven bridges. Can you go through all the bridges without revisiting
any bridge? Converting it into graph as shown in Fig. 1, the question is equivalent to finding a Eulerian
circuit in the graph.

The following theorem gives the answer.

Theorem 4. A connected graph has a Eulerian circuit iff all vertices have even degree.
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Proof. If the graph has a Eulerian circuit than every vertex has even degree (show it as an exercise). Let’s
prove that if every vertex has an even degree then there is a Eulerian circuit.

We will construct the Eulerian circuit recursively. Start with an arbitrary vertex, say w, find an edge and
move in that direction. Since the degree is even, when ever we arrive at a particular vertex, we have an edge
to leave that vertex too.

Since the number of edges are finite, we will arrive back at the starting vertex (call this cycle C). If all
edges are covered then we have found the Euler circuit. If not, call the subgraph with edges of C removed as
H. All the connected components of H will be connected to cycle C (since the graph is connected). Suppose
the connected components are H1, H2, · · · , Hk and connection points are w1, w2, · · · , wk when traversing the
cycle C from w in a particular direction (say anticlockwise).

Construct the Euler circuit in all connected components of H. We can use induction on number of edges,
since Hi has less number of edges then the original graph. The base case, total 4 edges in graph, is easy.

Then the Euler circuit for G will be, go from w to w1 using edges of C, take the Euler circuit of H1, go
from w1 to w2, take the euler circuit for H2, · · · , reach wk and take the Euler circuit for Hk, come back to
w using remaining edges of C.

Exercise 8. Write the pseudocode for finding a Eulerian circuit in a graph G.

Exercise 9. Show that it is not possible to take a Eulerian walk on the Königsberg bridges.

Similar to Euler circuits, a path x0, x1 · · · , xk is called a Hamiltonian path if it goes through all the
vertices of the graph. Remember that in a path we are not allowed to repeat the vertices.

It might seem like an easy task to give a necessary and sufficient condition for the existence of Hamiltonian
path like Euler’s circuit, but it turns out to be a really hard problem. You will study later that finding a
Hamiltonian path in a graph is an NP -complete problem (the list of problems which are assumed to be hard
for computers to solve efficiently).

There are many sufficient conditions known for existence and non-existence of Hamiltonian path.

Exercise 10. Show that a complete graph has a Hamiltonian path for n ≥ 3.

Exercise 11. If the first and the last vertex of a Hamiltonian path is same then it is called a Hamiltonian
cycle. Show that if a graph has a vertex of degree one then it can’t have a Hamiltonian cycle.

5 Adjacency matrix

Adjacency matrix is a representation of a graph in matrix format. Given a graph G, its adjacency matrix
AG is a |V | × |V | matrix. Its rows and columns are indexed by the vertices of the graph. The (i, j)-th entry
of the matrix is one if and only if vertex i is adjacent to vertex j, otherwise it is zero.

The adjacency matrix for the graph in Fig. 1 is,

AG =


0 0 0 1 0 1
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 0
0 0 1 1 0 0
1 1 0 0 0 0


Note 2. The adjacency matrix for an undirected graph is always symmetric.

Another matrix representation of a graph is called the incidence matrix. Here the rows are indexed by
vertices and columns are indexed by edges. An entry (i, e) is one if and only if vertex i is part of edge e,
otherwise it is zero. The incidence matrix for the graph in Fig. 1 is,
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e1 e2 e3 e4 e5 e6
v1 1 0 0 0 0 1
v2 0 0 1 1 0 0
v3 0 0 0 0 1 1
v4 1 1 0 0 0 0
v5 0 1 0 0 1 0
v6 0 0 1 0 0 1

Note 3. Here vi represents the i-th vertex.

The eigenvalues and eigenvectors of the adjacency matrix provide us with lot of information about the
graphs. We will see a few examples below. First, a lemma which will help us in proving results about
eigenvalues.

Lemma 2. Suppose {λ1, λ2, · · · , λn} are the eigenvalues of M . Then the eigenvalues of λI + M are {λ +
λ1, λ+ λ2, · · · , λ+ λn}, where I is the identity matrix. The converse is also true.

Proof. Exercise

A graph is called regular if every vertex has the same degree d. In this case, d is called the degree of the
graph.

Theorem 5. The maximum eigenvalue of the adjacency matrix of a regular graph G is d, the degree of the
graph.

Proof. By using Lemma 2, it is sufficient to prove that all eigenvalues of dI −AG are greater than zero.

For the sake of contradiction, assume that M = dI −AG has a negative eigenvalue µ with eigenvector u.
Then uTMu = µuTu < 0. We will prove that for every vector v, vTMv ≥ 0, hence get a contradiction.

Let vi be the i-th entry of v and Mij be the (i, j)-th entry. Then,

vTMv =
∑
i,j

Mijvivj

=
∑
i

di(vi)
2 −

∑
(i,j)∈EG

vivj

=
∑

(i,j)∈EG

(vi − vj)2 ≥ 0

(1)

Note 4. The term vTMv is known as the quadratic form of M .

To prove that there exist an eigenvalue d. Notice that every row of the matrix AG sums up to d.

Exercise 12. What is the eigenvector corresponding to the eigenvalue d.

A graph is called bipartite if the vertex set can be divided into two parts A and B, s.t., there are no edges
inside A and no edges inside B. A regular bipartite graph can be characterized by its eigenvalues.

Theorem 6. The minimum eigenvalue of the adjacency matrix of a connected regular graph is greater than
or equal to −d. It is bipartite if and only if the minimum eigenvalue is −d.
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Proof. By using Lemma 2, it is sufficient to prove that all eigenvalues of dI +AG are greater than or equal
to zero. There will be an eigenvalue 0 iff the graph is bipartite.

Again we will notice the quadratic form vT (dI +AG)v,

vTMv =
∑
i,j

Mijvivj

=
∑
i

di(vi)
2 +

∑
(i,j)∈EG

vivj

=
∑

(i,j)∈EG

(vi + vj)
2 ≥ 0

(2)

Suppose equality holds in the above equation. Notice that vi corresponds to the i-th vertex. Let’s say S1

is the set of vertices for which vi is positive and S2 is the set of vertices for which vi is negative. Then there
are no edges inside S1 and inside S2. This implies that the graph is bipartite.

Exercise 13. Why do we need the condition that graph is connected.

If the graph is bipartite, then assign 1 to one part and −1 to other part. This will show that the least
eigenvalue of dI +AG is zero (why?).

Exercise 14. Show that the bipartite graph can’t have an odd cycle.

A complete graph is a simple graph where every possible edge is present. A complete graph on n vertices
is called Kn.

Exercise 15. How many edges are there in a complete graph?

The adjacency matrix of the complete graph Kn is J − I, where J is all 1’s matrix and I is the identity
matrix, both of dimension n× n. You will find all the eigenvalues of Kn as part of the exercise.

6 Assignment

Exercise 16. There always exist a vertex of degree one in a tree.

Exercise 17. How many non-isomorphic graphs are there of degree 3 with 7 vertices?

Exercise 18. When will Kn, the complete graph, will have a Eulerian circuit? Can you give an explicit
description of such a circuit when n is a prime?

Exercise 19. How many subgraphs are there for a complete graph.

Exercise 20. What are the eigenvalues of the adjacency matrix of the complete graph.

Exercise 21. Show that the maximum eigenvalue of an adjacency matrix is less than the maximum degree
of the graph corresponding to it.

Exercise 22. For a graph G, show that the number of walks of length m between vertex i and vertex j is the
(i, j)-th entry of Am

G .
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