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In the next few classes we will talk about the basics of number theory. Number theory studies the
properties of natural numbers and is considered one of the most beautiful branches of mathematics. In this
lecture note, numbers means natural numbers or integers depending upon the context.

1 Fundamental theorem of arithmetic

The first task for us would be to derive the fact that every number has a unique prime factorization (funda-
mental theorem of arithmetic) from the basic division algorithm.

Division algorithm says that given two numbers a and b, we can divide a by b obtaining quotient q and
remainder r < b.

a = qb+ r

Since we have put the condition r < b, the quotient and remainder are unique.

Exercise 1. Show that the quotient and the remainder are unique if we assume that remainder is less than
b.

A number b divides a if the remainder is zero. We denote it by b | a. b - a denotes that b does not divide
a. If b divides a then a is a multiple of b.

Now we can define the greatest common divisor (GCD). The GCD of two numbers a and b is defined as
the biggest number which divides both a as well as b. It is also denoted by gcd(a, b).

One of the important case is when gcd(a, b) = 1, i.e., there is no common factor between a and b. We say
that a and b are coprime to each other.

1.1 Euclid’s GCD algorithm

Euclid’s GCD algorithm is one of the earliest, most elementary and most important algorithm in the world
of mathematics. It gives a recursive way to calculate the GCD.

Suppose we are given two numbers a, b, s.t., a ≥ b. The algorithm gcd(a, b) is given below.

if b = 0 then
Output a

end
if b = 1 then

Output 1
end
Say a = qb + r, then find gcd(b, r)

Algorithm 1: GCD algorithm

The correctness of the procedure relies on the fundamental fact that if a = qb+r then gcd(a, b) = gcd(b, r).

Exercise 2. Can you prove this?



To take an example, lets compute the GCD of 64 and 26.

gcd(64, 26)→ 64 = 2× 26 + 12

gcd(26, 16)→ 26 = 2× 12 + 2

gcd(12, 2)→ 12 = 6× 2 + 0

gcd(2, 0)→ 2

(1)

This shows that gcd(64, 26) = 2. In general the equation will look like,

gcd(a, b)→ a = q1 × b+ r1

gcd(b, r1)→ b = q2 × r1 + r2

...

gcd(rk−2, rk−1)→ rk−2 = qk × rk−1 + rk

gcd(rk−1, rk)→ rk−1 = qk+1 × rk + 0

gcd(rk, 0)→ rk

(2)

In this case gcd(a, b) will be rk. Notice that r1 can be written as an integer combination of a, b, i.e.,
r1 = c1a + c2b for some integers c1, c2 using the first equation. Similarly r2 can be written as an integer
combination of b, r1 and hence a, b.

Keeping track of these coefficients, ultimately we can write the gcd(a, b) = rk as the integer combination
of a, b.

Theorem 1. Given integers a, b ≥ 0, there exist two integers k, l, such that,

gcd(a, b) = ka+ lb

It is clear from the argument before that these coefficients can be obtained by keeping track of coefficients
in Euclid’s algorithm. This is called the extended Euclidean algorithm. You will write this extended Euclidean
algorithm as part of the assignment.

Exercise 3. What can you say about the size of k and l?

Using Theorem 1, we can prove the following lemma.

Lemma 1. Let gcd(a, b) = 1. If a | bc then a | c.

Proof. We know that there exist k, l, such that,

1 = ka+ lb.

Multiplying both sides by c,

c = kac+ lbc

Since a divides both the terms on the right hand side, a divides c too.

Using this basic lemma, we can prove the fundamental theorem.
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1.2 Proof of fundamental theorem of arithmetic

From the definition of primes it is clear that we can start finding the factors of any number n. Either n is
prime or it can be written as mm′. If we keep applying this procedure to m and m′. We get that any number
n can be written as,

n = p1p2 · · · pk,
for some k, where pi’s are primes. Collecting the same primes in one power, we get the factorization,

n = pl11 p
l2
2 · · · p

lk
k ,

for some k. This is called the prime factorization of n. It is not clear from the method above that this
factorization is unique.

Can two such factorizations exist? It turns out, this factorization is unique up to ordering of primes. For
the sake of contradiction, suppose there are two such factorizations p1 · · · pk and q1 · · · ql. By cancelling the
common primes, we can assume that no pi is equal to any qj .

We know that since p1 is a prime, it will divide either q = q1 · · · ql−1 or ql (Lemma 1). If it divides
q = q1 · · · ql−1, we can further divide q and ultimately get that p1 divides qi for some i.

This implies that p1 divides some qi. But p1 and qi are both primes. So, p1 = qi, which is a contradiction.
This gives the theorem,

Theorem 2. Unique factorization: Given a number n, it can be written in a unique way as a product of
primes (unique up to ordering).

n = pl11 p
l2
2 · · · p

lk
k

Where pi’s are all primes.

2 Modular arithmetic

What is the last digit of 264? This number is too big and it is very difficult to calculate the last digit by
computing the number 264.

But the problem becomes simpler if you realize that the last digit of 264 is the remainder of 264 when
divided by 10. Denote the remainder of n when divided by 10 as r(n). Next observation is, r(264) can be
calculated by multiplying r(232) and r(232) and then taking the remainder by 10.

Exercise 4. Prove that r(ab) = r(r(a)r(b)).

Applying this technique recursively, we get, r(28) = 6 ⇒ r(216) = 6 ⇒ r(232) = 6 → r(264) = 6. So the
last digit of 264 is 6.

Exercise 5. Show that the last digit of 22
n

for any n ≥ 2 is 6.

Above example of dealing with remainders is called modular arithmetic. There are many uses of modular
arithmetic in mathematics, computer science and even in chemistry. Please read the Wikipedia article for
more applications.

Let’s study modular arithmetic more formally.

Definition 1. We say a = b mod n iff a− b is divisible by n.

Note 1. a = b mod n is read as, a is congruent to b modulo n. Some books also use the notation, a ≡ b
mod n

It is clear from the definition that a = b mod n then a = kn+ b mod n for any integer k. For a number
b, the set {b + kn} is called the residue class of b modulo n and is denoted b mod n. For example, the set
{· · · ,−10,−7,−4,−1, 2, 5, 8, 11, · · · } is the residue class of 2 modulo 3.

The set of all residue classes of n is denoted by Zn.
Notice that any element c ∈ a mod n is of the form a + kn for some k. Using this definition, we can

define the operations like addition and multiplication between these modulo classes.
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1. a mod n+ b mod n = a+ b mod n
2. (a mod n)(b mod n) = ab mod n

We can easily check that these definitions are consistent. For the first relation, this means, take any two
elements c ∈ a mod n and d ∈ b mod n. Then c+ d = e mod n for any e ∈ (a+ b) mod n.

Exercise 6. Check the consistency for the second relation.

For doing calculations, it generally makes sense to take the smallest number in a mod n as the repre-
sentative and do the calculations using that representative. The representatives will be {0, 1, 2, · · · , n − 1}
and all of them will belong to different residue class. Whenever doing these calculations, we can subtract
any number of the form kn to keep the calculation in the range {0, 1, 2, · · · ,m− 1}.

Another way to say the same things is, Zn = {0, 1, 2, · · · , n − 1}. Where it is understood that 0 stands
for the residue class of 0 modulo n and so on. You can add and multiply numbers in this set modulo n.

Exercise 7. What is the last digit of 239?

Though you should be careful not to overuse your intuition of operations on Integers. For example, if
ab = 0 mod n and a 6= 0 mod n, does not imply that b = 0 mod n. Take a = 2, b = 3, n = 6 as an example.
This property also tells you that ab = ac mod n 6⇒ b = c mod n.

Exercise 8. Solve the following questions,

1. What is 1235 mod 25?
2. Show that 2468× 13579 = −3 mod 25.
3. Show that 5n mod 10 = 5 for all n.
4. If n has representation xrxr−1 · · ·x1x0 in decimal, i.e., n = x0 + 10x1 + · · ·+ 10rxr. Then n = x0 + x1 +
· · ·+ xr mod 9.

5. Show that 9787× 1258 6= 12342046 by calculating both sides mod 9.
6. Suppose 3a = 0 mod p where p is a prime and a < p. What is p?

2.1 Inverse modulo n

We noticed above that ab = ac mod n need not imply b = c mod n. This is because n | a(b − c) implies
n | b− c only when gcd(a, n) = 1.

But if a and n are coprime to each other then there exist an integer k, s.t., ka = 1 mod n (Thm. 1).
The number k (more precisely the residue class of k modulo n) is called the inverse of a modulo n and is
denoted as a−1. If inverse of a exist,

ab = ac mod n⇒ a−1ab = a−1ac mod n⇒ b = c mod n.

When n is a prime, then any 0 < a < p has GCD 1 with n. In this case, inverse exist for all a not divisible
by n. Hence, while computing modulo a prime p, we can divide freely too.

Exercise 9. Find the following quantities.

1. 2−1 mod 11
2. 16−1 mod 13
3. 92−1 mod 23

Exercise 10. Give an algorithm to find a−1 mod n. What previous algorithm can you use?

Let’s look at one of the nice theorems in number theory.

Theorem 3. Fermat’s little theorem: Given a prime number p and an integer a coprime to p,

ap−1 = 1 mod p.
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Proof. We will look at the set S = {a, 2a, 3a, · · · , (p − 1)a}. Since a is coprime to p, no element ka = 0
mod p if k 6= 0 mod p.

Exercise 11. Show that @s, t ∈ S : s = t mod p.

The previous exercise shows that the set S has p − 1 distinct entries all ranging from 1 to p − 1. So set
S is just a permutation of set T = {1, 2, · · · , p− 1}. Taking product of all entries in S and T modulo p,

a.2a.3a. · · · .(p− 1)a = 1.2. · · · .(p− 1) mod p.

Cancelling the (p− 1)! term from both sides,

ap−1 = 1 mod p.

Hence proved.

Exercise 12. Prove that ap = a mod p for any prime p and any integer a.

3 Euler’s totient function

The case when n is not a prime is slightly more complicated. We can still do modular arithmetic with division
if we only consider a’s coprime to n.

Let’s define the set,

Z∗n = {k : 0 ≥ k ≥ n, gcd(k, n) = 1}.

The cardinality of this set is known as Euler’s totient function φ(n), i.e., φ(n) = |Z∗n|.

Exercise 13. What are φ(5), φ(10), φ(19)?

Clearly, for a prime p, φ(p) = p − 1. What about a prime power n = pk. There are pk−1 numbers less
than n which are NOT coprime to n (Why?). This implies φ(pk) = pk − pk−1. How about a general number
n?

We can actually show that φ(n) is multiplicative. In the context of the number theory, it means,

Theorem 4. If m and n are coprime to each other,

φ(mn) = φ(m)φ(n).

Proof. Call S = Z∗m × Z∗n = {(a, b) : a ∈ Z∗m, b ∈ Z∗n}. We will show a bijection between Z∗mn and S =
Z∗m×Z∗n. Then the theorem follows from the observation that φ(mn) = |Z∗mn| = |S| = |Z∗m||Z∗n| = φ(m)φ(n).

The bijection ψ : S → Z∗mn is given by map, ψ(a, b) = bm+ an. We need to prove that ψ is a bijection.
That amounts to proving these three things.

– The mapping is valid, i.e., if a ∈ Z∗m and b ∈ Z∗n then bm + an ∈ Z∗mn. This follows from the fact that
bm is co-prime to n implies bm+ an is coprime to n. Similarly bm+ an is coprime to m. So bm+ an is
coprime to mn.

– Mapping ψ is injective (one to one). You will prove this in the assignment.
– Mapping ψ is surjective (onto).

Exercise 14. Any member t ∈ Zmn can be written as t = km+ ln mod n where k, l are integers.

To prove that the mapping is surjective, now we only need to show that if k /∈ Z∗n or l /∈ Z∗m then
km+ ln /∈ Z∗mn. This is also left as a simple exercise.
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Exercise 15. Find m,n, s.t., φ(mn) 6= φ(m)φ(n).

Fundamental theorem of arithmetic implies that we can express any number as product of prime powers.
By using Thm 4, we can calculate φ(mn), when φ(m) and φ(n) are given to us (m and n are coprime).

Theorem 5. If n = pk1
1 p

k2
2 · · · p

kl

l is a natural number. Then,

φ(n) = n(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pk
).

Exercise 16. Prove the above theorem using the argument above.

4 Mobious Inversion

There is another way to look at Thm. 5. We are interested in finding out the number of elements between 0
and n which do not divide n = pk1

1 p
k2
2 · · · p

kl

l . Lets consider all the elements {0, 1, · · · , n− 1}.
Define Ai to be the set of elements which are divisible by pi. For any I ⊆ [l], define AI to be the set of

elements which are divisible by all pi where i ∈ I. You can see that we are interested in the event when none
of the pi’s, where i ∈ [l], divide an element. This is a straightforward application of inclusion-exclusion.

φ(n) =
∑
I⊆[l]

(−1)|I||AI |

Notice that the number of elements which are divisible by p1p2 · · · pj is just n
p1p2···pj

. This gives us,

|AI | =
n

Πi∈Ipi
.

So,

φ(n) =
∑
I⊆[l]

(−1)|I|
n

Πi∈Ipi
. (3)

Exercise 17. Prove that the above expression is same as the one in Thm. 5.

In Eqn. 3, the sum is taken over all square-free (numbers of the form p1p2 · · · pi) divisors of n. Define a
function, µ(k),

µ(k) =

1 if k = 1
0 if a2 | k for some a ≥ 2
(−1)r if k = p1p2 · · · pr

This function µ(k) is called the Mobious function. Then,

φ(n) =
∑
d|n

µ(d)
n

d
.

Exercise 18. For an integer n ≥ 2, show that, ∑
d|n

µ(d) = 0.

Hint: Look at the prime factorization of n.
Mobious function is really useful in number theory and one of the reasons is its inversion property.
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Theorem 6. Let f and g be functions defined on natural numbers. If

f(n) =
∑
d|n

g(d)

then
g(n) =

∑
d|n

µ(d)f(
n

d
).

Proof. Let’s look at the right hand side of the expression for g(n).∑
d|n

µ(d)f(
n

d
) =

∑
d|n

µ(d)
∑
c|n/d

g(c)

=
∑
c|n

g(c)(
∑
d|n/c

µ(d))

= g(n)µ(1)

(4)

The third equality follows from the fact that
∑

d|n µ(d) is 0 for n ≥ 2. The second equality is given as an
exercise.

Exercise 19. Prove the second equality by considering the pairs (c, d), s.t., d | n and c | n/d.

5 Assignment

Exercise 20. Prove the correctness of division algorithm.

Exercise 21. Another definition of g = gcd(a, b) is, g is the number which divides both a, b and any number
which divides both a, b also divides g. Show that the two definitions are equivalent.

Exercise 22. Write the extended Euclidean algorithm for GCD

Exercise 23. Solve x2 = 10 mod 13 by trial and error. There are two solutions.

Exercise 24. Suppose x2 = a mod p where p is a prime. Show that for any 0 < a < p, there are exactly two
solutions or none.

Exercise 25. Solve the quadratic equation x2 + 3x+ 11 = 0 mod 11

Exercise 26. Show that a number n is prime iff ,

1.2. · · · .(p− 1) = −1 mod n.

This is known as Wilson’s theorem.

Exercise 27. Solve the equation x2 + 5x+ 8 = 0 mod 11.

Exercise 28. Prove that the mapping ψ as defined in the proof of Thm. 4 is injective (one to one).

Exercise 29. Prove the converse of Thm. 6.
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