
Cloud Computing
Prof. Soumya Kanti Ghosh

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 24
MapReduce – Tutorial

Hi. Today we will discuss some tutorial on MapReduce. Already we have discussed on

MapReduce. So, today we will try to solve one or two problems or rather try to see how

one or two; how we can decompose a problem into a MapReduce problem and how to

work on it.

So, if you remember that a MapReduce paradigm is used for processing huge volume of

data where paralysation is possible. And primarily rather developed by Google and later

on used in various fields. So, what we will do; we will initially couple of slides we will

have a quick recap before we take up one or two problems related to this MapReduce

framework.

(Refer Slide Time: 01:15)

So, as we discussed already; so, it is a programming model developed at Google.

Implement large scale search primarily; the basic objective was to implement large scale

search. Text processing on massively scalable web data using data stored using Big Table

and GFS distributed file system; Google file system and big data; Big Table.

So, this was a objective of Google which it started with; so, design for processing and

generating large volume of data by massively parallel computation; utilizing tens and

thousands of processor at a time. So, there are a huge number of processors to the tune of

tens and thousands. So, whether if there is an inherent parallelism inside the things

whether I can exploit it into the thing, so it is designed to be fault tolerant; that means,

ensure progress of the computation; even if the processor or network fails. So, it should

be fault tolerant to the extent that even there is a failure in the processors or the network;

it to still the working should go on.

So, that was the basic assumption or basic; let us say precondition of doing this or that

was basically these; what they was taken up. So, there are several things like Hadoop,

open source implementation of MapReduce; incidentally it was developed by Yahoo;

available on pre packaged AMIs on Amazon EC2 and so and so forth.

(Refer Slide Time: 02:45)

So, if we look at apart from its history; so, it is a parallel programming abstraction used

by many different parallel applications; which carry out large scale computation

involving thousands of processors. It is again as we have doing the underlining fault

tolerant implementation; both on the data site and on processor and network site. So,

everything is fault tolerant; divided into two phases; one is a map phase. So, mapping

the; so, the given a problem I divide into two phases. So, it is mapped into a intermediate

result and reduced to a; again, the reduce function or reduce phase; reduce those

intermediate result to the actual results.

So, in doing so; what we have seen in our earlier lecture or earlier discussion on

MapReduce that we can have parallel efficiency in; we can achieve substantial parallel

efficiency, when we are dealing with a large volume of data and there is inherent

parallelism into the process. So, what we look at there are M number of mapper

processor and R number of reducer processors; which are assigned work based on the

problem.

So, there is a master controller M mapper processor and say R number of reducer cell

processors which work on that. And in some cases this mapper and reducer; processor

can stay at the same physical infrastructure. So; that means, sometimes we acting as a

mapper and at a later stage acting as a reducer type of things. So, it is a our capability of

the developer or it is that how you devise these mapping and map and reduce functions.

Implementation also based on that whatever that language; the developer working on,

maybe there are lot of; means people are working on python, it can be on c plus plus and

other type of coding things.

So, that that coding part is based on that what sort of problem and what is the

environment you are working on. But primarily a philosophy there are M number of

mapper and a set of reducer; you have intermediate results into the thing.

(Refer Slide Time: 05:09)

So, as we discussed earlier that e map is each mapper reads 1 M th of the input from the

global file system, using locations given by the master. So, master controller; the

controller of the master node says that these are the chunks you need to read.

So, map function consists of a transformation from one key value pair to another key

value pair. Like here I have a k 1; v 1 mapped to k 2, v 2; each mapper writes

computation results of one file per reducer. So, it is prepared typically if there are R

reducers. So, it prepares the result for one file per reducer, if there is one reducer; so one

file that it creates a file for the user.

Files are stored in a key and sorted by a key and stored in a local file system. So, that is a

local file systems where the output of the mapper are stored. The master keeps track of

the location of this file, the master has the tracking of the things. On the reducer phase or

the reduce phase; the master informs a reducer where the partial computation because the

mapper has done a partial computation of the whole process; have been stored on the

local file system for respective mappers.

So, if there are M mappers for the respective mappers where the files are stored for that

particular reducer. Reducer make remote procedure call; request the mapper to face the

files. Each reducer groups the results of the maps tape using the same key and performs a

function; some function f and list of values corresponding to this value. That means, if I

have as you as k 2; v 2 then I map it to some k 2 and function of that v 2.

So, if the function may be as simple as averaging; so, maybe frequency or the count or

some complex functions of doing some more operations. So, results are written back to

the Google file system, so the Google file system takes care of them.

(Refer Slide Time: 07:18)

So, MapReduce example; so, there are 3 mappers; 2 reducers, map function is in this

case as we; if you remember or if you look at our previous lecture and discussion. So,

there is a huge volume of watt and what we want to do a watt count. So, the every

mapper has a chunk of the data things like this mapper has D 1, D 2, D 3 and this is D 4,

D 7, D 8 etcetera.

So, every mapper does a partial count of the word like and for w 1, w 2, w 3 and so and

so forth. And there are two reducers, so it creates file for both the reducer and so the

reducer one is responsible for w 1 and w 2; whether the users two is for w 3 and w 4.

And we do a word count on the thing, so there is a mapping function where this is done

and there is a reducing function, where it is basically the function is for summation of

this count for every 1; w 1. So, that is dividing this is what count problem into a

MapReduce problem and last talk or last lecture we have shown that this can give

parallel efficiency in the system.

(Refer Slide Time: 08:43)

So, we now look at a couple of problems; so, this is not exactly MapReduce problem,

just to go for file system or GFS; Google file system. So, if the block size is 64 MB if

you remember these file systems are larger chunk block size than never natural file

system. And another thing was that there is a three replica of every instance of the data.

So, there is a three replica where which allows you to have a fault tolerant mode; so

based on that there are read write operations under.

(Refer Slide Time: 09:30)

So, in this particular thing; if we say if there are; if the HDFS block size is 64 MB, then

we want to find out; if there are three files of 64 K, 65 MB, Kb; MB and 127 MB.

So, how many blocks will be created by the HDFS framework. So, if for the 64 kb; how

many you know one will be created and 65 MB, we have 2; because upto 64 MB; 1 and

127 MB also 2. So, total 5, but in reality as there are replicas like you have replicas; so,

there is typically 3 replica, so effective block size will be 5 into 3 equal to; these blocks.

So, very straightforward; nothing, no complexity in it, so if I have different type of thing.

So, we can calculate this straightforward; so, again nothing to do with; immediately

nothing to do with MapReduce, but nevertheless; the data is stored in either HDFS or if it

is a open source or in a GFS, if it is Google file system and it need to be this data size or

the storage need to be budgeted, when you are working with large data set that how

much stored you require, how much storage you require to work on this type of data sets.

(Refer Slide Time: 11:29)

Now, let us see one problem on very again very straightforward problem on MapReduce

framework. So, whether we can have this MapReduce framework; though again we may

not very much appreciate directly because of this simplicity of the problem. But to

understand the MapReduce framework, it may be good; so you want to write the pseudo

codes or codes in any language that; where there are; what we want to do? Calculate the

average of a set of integers in MapReduce. So, a set of integers being pumped into the

system, it may be a direct input from the keyboard or something and so we want to find

out the average of the set of integer. In other sense, in this typical case I have set of

integer A as; 10, 20, 30, 40, 50.

(Refer Slide Time: 12:22)

So, set of integers are there so I want to make a average. So, in other sense we want to

basically sum it up and divide by the cardinality. So, totally divided by 5 so in this case

what we do? The master node say we consider there are three mapper. So, there are

mapper nodes we considered as 3 numbers and a reducer say 1 number.

So, what do in a master node what it does for this mapper; it divides into say M 1, M 2,

M 3; 3 mapper node. So, a portion of this data say it gives 10, 20 to the first one; 30, 40

and 50. So, each mapper does a partial counting of the things; it does a averaging of

these two things. So, it is something which comes up as; I can say average and count. So,

first one is 15, 2; then this is 35 cardinalities 2 and this is 50; 1.

In other sense; in the temporary local file system is store 15; 2, 35; 2. What basically the

output of the mapper; it does by the combiner. So, this is the map functions wants to

achieve.

On the reduce; reduce is primarily is there is a one reducer it takes all the things and it

does a averaging of the things or more this averaging of the whole thing. So, in other

sense what it does say 15 star 2; here 35 star 2 and 50 star 1. In other sense is sigma sum

is 150; sigma count is 5.

So, it says 150 by 5 are 30; what it is basically 15 star 2 plus 35 star 2; so, that the

exactly does. So, the problem is pretty straightforward or simple you may not find that;

what is the big deal here? If the number of things is pretty high coming as a stream, and

then I can basically do a parallel things; these are parallely processed and this is reduced

by the one particular reducer.

So, if we write the code for it; so, you can use any language to do that. Here we are using

say python or python type language, it is the language is does not matter; the

representation you can do use any pseudo code and type of things.

(Refer Slide Time: 16:21)

So, you have that mapper function or say mapper dot pi; so, it is something python type.

So, we are not much giving importance to the syntax; rather we are more giving

importance to the concept.

So, def map; so l is the least; so, what we do? We initialize a sum equal to 0 for i in range

0 to length of l sum equal to sum plus. So, every mapper does this; every mapper what it

does; it takes that chunk of data which is being allocated to it for by the master node and

then in our cases how many data is there?

The mapper 1 has 2 data; mapper 2 has 2 data mapper 3; M 3 has 1 data; so, it is 2; 2

each. So, for every mapper we done this; so, we that average sum by length of l in this

case 2; it should be like this sum by length of 2. Or in other more strictly speaking, we

should; to have a floating point difference, floating point divide because this is a;

otherwise there may be integer divisions.

So, we can ideally give some star 1.0 divided by length of l. So, length of l; in this case 2

and then we output this; let us use print function, output this to the local file system. So,

there can be this command wise; it may be different if you are using different

programming paradigm lengths; so, the mapper basically emit these data.

So, it is stored in the local file system; so, what we are doing, for every mapper we are

reading a list of data which is being assigned by its master node, making that some

initializing the sum to value, then we add what we are doing for i; for in the loop. So,

calculating the sum making a average out of it rather this is nothing, but to make it float

division. And then it is emitting or dumping that value into the local file systems; which

the reducer will read it.

So, this is the mapper portion of the thing; so, if we look at the reducer portion what we

have def reduce. So, what it reads; so, whatever the mapper has dumped in the things.

So, if you look at it is giving these average value and the lengths of the thing.

(Refer Slide Time: 20:14)

Here also we read that particular thing sum equal to; so, here for i in range of 0; length of

l. So, it is what it is doing if we look at our previous thing; so, what it is doing, it is

basically trying to calculate this sort of values. So, count also equal to count plus length

of i; so, finally what we get average. Again sum to make it float; yes multiply this or you

can basically typecast also count and then print average it.

So, what it is reducer is doing taking this local file system as there are only one reducer.

So, it takes all the values and for all that data; it goes on summing up that output from

the each mapper, in this case there are 3. So, it is it is coming to be 15 into 2; plus 35 into

2 plus 50 into 1; divided by count, which is here 2 plus 2 plus 1 is 5. So, and it calculates

the average value and then it again writes the average value to the Google file system or

Hadoop file system based on the whatever the requirement is this.

So, here this is that again though this is may be a straightforward simple thing, but we

see that I can divide a problem; as there are inherent parallelism like there are; I could

have like in order to do a averaging I have taken a chunk of data and that we try to solve

it using in MapReduce framework.

So, if there is a huge volume of data then the mapper; that the master node divides

accordingly and do the partial computation and the reducer read it from and do the final

computation. So, this is again a simple example of a MapReduce framework; so, next we

see another problem.

(Refer Slide Time: 23:41)

So, what it says I want to compute the total and average salary of organization XYZ;

some organization grouped by the gender using MapReduce. So, input is name, gender

and the salary of the thing; in this case say name is John, gender is M or male and salary

is something 10000 unit or maybe 10000 dollar or something. And the next one is

Martha, gender is F and salary is something 15000.

So, what we want to do? We want to find out that male wise, like gender wise; in this

case male and female that what is the your total and average salary; anyway that total

divided by the cardinality will be the average salary of the things; so, the output will be

like in that form. So, what we try to look at whether we can employ MapReduce problem

to look into this particular problem. So, let us look at it.

(Refer Slide Time: 24:53)

So, what we are having? We are having this tuple like this; name gender and salary. So,

this is the tuple; so, what we want to do in the map phase? So, want to if the input data

whatever the input data say it is there; there are different set of the input data set. So,

what we want to do? We want to extract only because we are not bothered about the

gender M; bothered about the name of the person or that is not required in the; so, in the

salary.

So, we want to calculate from there these two thing say M the salary; so, irrespective and

so, they want to do type of this type of things or I can have a key value pair. Key is this;

male or female and value is the salary of the things or we can say that we have two sort

of a dictionary structure which is having a key value pair and then having say; I say this

is Dict 1, Dict 2 and these two type of key value pair and for every 1, I can have Dict 1

then maybe total an average for other one also Dict 2; id maybe.

So, so id in this case is this particular male or female and then having total or average

salary. So, compute total average for the two separate say we consider there is a

dictionary structure and the reducer basically does this thing. So, want to see that how to

realize this, so what let us look at the problem.

So, I have a set of name, gender and salary; want to extract that gender and the salary

from every topple. So, if I have multiple mapper; so, I extract those things and dump as a

particular two type of dictionary type. One is that two type of thing; one is that what we

have this with M and f and the at the reducer part, we calculate the total and average

salary of the things or any of the thing.

(Refer Slide Time: 28:01)

So, again we look at as a mapper dot py or mapper dot some python type code. So, again

I am just want to again repeat it; that you can do with any coding language which is

suitable for this and whatever we are doing may not be; there may be some syntactical

problem with the actual python thing, but it does not matter the conceptually you want to

show that things works and then actual syntactical syntax need to be followed, if you are

really want to implement this.

So, this is the thing for a line in syz dot std in; what we are doing. So, what we are

considering that it is separated by a comma. So, we are split is; sorry it should be

comma. So, I now separate name equal to line 0, salary represents Sal is; line 2 while

generating the; or emitting the mapper phase, the data into the local file system. So, we

keep print comma percentage d.

Then, so what we do? Gender and salary; in other sense this syntax you need to check

up. In other sense, what we do we dump basically gender in the salary into the thing or

M and the salary portion; like as you see we want to generate this M and the salary

portion and another thing is that either M or f and the salary portion.

(Refer Slide Time: 31:22)

So, in the reducer phase; what we do that import; so, define that or call this dict org that

is dictionary class for line in sys in what we do. So, what it is reading? It is reading

basically that the gender or that key value fear with the gender and the value of the things

or in other sense the gender and the salary values. So, we do not have that name into the

things because this particular query does not require the name of the thing; line of 1.

So, if it is already existing; that means, once you have read then dict org; so, what is our

objective? So basically sum up the salaries by adding go on adding on the salary values

for the same gender type. So, already if there; that means; so, what that now my existing

the reducer dictionary counting, a key value pair. So, if the key is already that gender is

there or male or female, then I go on adding those things whenever I get. If it is not there

if it is else; that means, this is basically the initialization thing dict org.

So, initialize with a blank thing; so first time when it is coming. So, in first time it is

coming; that means, there is a blank thing. So, if it is blank then it basically initialize;

then append the salary; that means, it is initialized with the salary of the dict org dot

keys; salary average equal to sum of dict org; gender divided by length of dict org

gender. So, it is summing up divided by things straightforward and total salary equal to

only sum of dict org gender. And then we basically write back the other thing from to the

Google or GFA or the HDFS file system. If we want to separate it by a comma or tab as

the case may be; again maybe D if it is a integer or based on that if it is a float and all

those things.

So, we have this as gender total sal and salary avg. So, that is the what we do at the final

reduce surface. So, if we try to just quickly have a look, so what we are doing in the

mapping function; we have three thing like name, gender and salary. Our objective is to

the mapping functions; so, see this all the map are we like find out this individually this

whether it is a; which gender M and find keep this salaries along with that g M or f and

salary and the reducer will basically; so, that it exactly that gender and salary and the

reducer will basically extract that intermediate result and calculate the average and the

total.

So, here that that operation is there; so, this is a typical python type, I am not strictly

telling python because there may be some syntactical issue. But you can implement in

anything, the idea is that I divide the problem into smaller parallel things by the mapper

and then in the second phase; the reducer put it to another key value pair. So, key value

from the input set; to a set of key value pair, reducer takes that key value pair and put a

function; in this case average or total of the things, to another set of key value pair and

the finally, it goes to the HDFS pair or GFS file system ok.

So, what we tried to look at in today’s thing that; this MapReduce functions say simple

problems; how we can put it into map and reduce things. That this number of mappers

available; allow is basically availability of the resource and the how the master nodes

divide it and the number of reducers also based on the term. What type of functional

things you want to do and so they master node is there, it divides into M number of

mapper and a number of reducer.

The problem is the functionality of the problem is divided in such a way so that it can be

executed in two phases, and we can have a parallel implementation of this sort of

paradigm.

Thank you.

