
Cloud Computing
Prof. Soumya Kanti Ghosh

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 13
Managing Data

Hello. So, we will continue our discussion on cloud computing. Today, we will discuss

about some aspects of managing data in cloud, right. So, as we understand that in cloud;

as we have discussed in our earlier lectures that in cloud, one of the major aspect is the

data because at the end of the day, your data and even processing applications are in

somebody else’s domain, right. So, they are being executed at somewhere else which is

beyond your direct control. So, it is virtually host in some virtual data; a virtual machine

somewhere in the cloud. So, it becomes tricky to on the security point of view that we

have discussed; not only that if you look at from the other point of view; so, from the

clouds provider point of view, managing huge volume of data keeping their replicas and

making them queriable and these becomes a again a major issue.

So, all our conventional relational or object oriented model may not directly fit into the

thing, right. So, long you are doing on a small instances experimental some database

application or some small experimentations, then it is fine, but when you have a large

scale thing where huge amount of retried going on or the volume of data is much much

higher than the normal operations, then it is; we need to look in a different way. These

are the things which come into not only for the cloud, it was there a little earlier also; like

how this parallel database accesses; parallel database execution; read-write execute

operations can be done. So, those things become more prominent or a de facto

mechanisms; when we talk about in context of cloud. So, what we will try to do is more

of a overview of how data can be managed in cloud or what are the difference strategies

or schemes people or this ISPs follows and it is not exactly the security point of view; it

is more of a management data management point of view, right.

(Refer Slide Time: 03:02)

So, we will talk about a little bit of relational database already known to you then what

you known to do that scalable data bases or data services like one of the couple of things

are important one is Google file system big table and there is a map reduce parallel

programming paradigm; those are the things which comes in back to back, when we are

doing to the things. So, what we want to do when we were we are managing anything on

a cloud platform; whether it is application or data we want to make it scalable in the

sense the it suites scale as the requirement goes up. So, scale up-scale down in a

ubiquitous way or minimum interference from the; or minimum human or management

interference. So, that type of infrastructure; we want to come up with, right, it is true for

data also.

(Refer Slide Time: 04:09)

So, these are primarily suitable for large volume of massively parallel text processing,

right that is one of the major thing or it is suitable for environment say enterprise

analytics, right, I want to have a; if we want to do analytics on a distributed data stores,

right, it may be a chain of a shopping or commercial staff or it may be a banking

organization or financial any financial organization, even it is something to do with large

volume of other type of data like it metrological data, it maybe climatological data

something which need to be chant or has a distributed things, I need to do some parallel

processing down the line where the actual effect comes into play. If you have a simple

database with a simple instant, then you may not have gone to cloud for that; right. So, it

may be a simple system or you buy a very a VM and work on it then the actual effect of

cloud things are actual advantages of cloud you are not taking out.

So, we will see that similar to big table models there are Google app engines, datastore,

Amazon, simple DB which are which different provides provide in different flavor, but

the basic philosophy are same.

(Refer Slide Time: 05:46)

So, if we look quickly look at the relational data base which is known to all of you or

most of you users application programs interact with RDBMs through SQL, right. So, it

is the structured query language or SQL by which I we interact with the user programs,

etcetera.

So, there is a relational database management parser which transforms queries into

memory and disk label operations and optimize the execution time. So, in any query, we

need to optimize the execution time of the query, right. So, if it is a large data base like

you, whether you do project before select join before or after select that makes a lot of

difference; though the query may be same the query output will be same, but the

execution time may vary to a great extent, right, like I have a huge 2 data bases like R ;1

say relational databases R 1, R 2 and I do some projection or selection of some of the

things, right I select A 1, A 2 and then do a; then do the; join whether I do the join before

or after makes the things like suppose; if I do the select on R 1; the number of tuples

come down from 1 million to say few 1000s. Similarly for R 2, if I do a select on that;

right. So, then joining is much less costlier. So, whether you do the join first or it said

that becomes a thing that is a database optimization problem nothing to do specifically

for cloud, but relational database allows you to optimize those things.

Disk space management layer this another property that stores data records on pages of

contiguous memory block. So, that the disk movement is minimized pages are fetched

from the disk into memory as requested state using pre fetching and page replacement

policies. So, this is another aspects of the things like one is looking at that property

making it more efficient in the query processing other aspect it make it more efficient in

storage terms of things like nearby things if the query requires the some 5 tables if they

are nearby store then the access rate is high. So, database file system layer.

(Refer Slide Time: 08:15)

So, previously we have seen that RDBM parser then disk space management layer then

database file system layer. So, it is independent of OS file system, it is a separate file

system. So, it is in order to have full control on retaining or realizing the page in the

memory files used by the DB or database may span multiple disk to handle large

storages, right.

So, in other sense like if I dependent on the operating system for phase all those things

then it is fine when your again database load is less if it is pretty large then the number of

hope you take it text it becomes costly. So, what you need to do we need to do directly

interact at the at the much lower level with the with the hardware or the available

resources and that exactly this database file system layer tries to immolate uses parallel

IO like we have heard about Raid disk Raid 1, Raid 2, Raid 5, Raid 6, e N type of things

arrays or multiple clusters. So, which keeps a redundant redundancy into the thing. So,

the your this failure down time is much less so; that means, is it is basically full failure

proof implementation of the database.

(Refer Slide Time: 09:42)

So, usually the databases storage as row oriented that is we had tuples and its a set of row

of the same schema optimal for write oriented operation the transaction processing

applications relational records stored in contiguous disk pages access through indexes

primary key on specific columns B plus tree is one of the favorite storage mechanisms

for this sort of thing column oriented efficient for data warehouse workloads right. So,

those who have gone through data warehouse are. So, it is a high dimensional data huge

volume of data and being collected and populated by different things. So, it is more of a

warehouse, rather than a simple database. So, this is this column oriented storage are

more suitable for data warehouse type of loads aggregate of measures where rather than

individual data it is more of the analysis on analytics come into play. So, it is aggregation

of measure columns need to be performed based on the values of the dimension columns.

So, we are not going to the data warehouse. So, it has a different dimension tables and

type of things and we need to the operations are more aggregate operations, right, we

want to do some sort of analysis and type of things.

So, projection of a table is stored on as a stored on a dimension table dimension values in

case of a column oriented require multiple indexes if different projection are to be

indexed in a sorted order right. So, it is; if it is a different-different thing because the

organization may have different views for different type of data and need to be stored in

that fashion.

(Refer Slide Time: 11:31)

So, data storage techniques as we have seen; it is B plus tree or join indexes. So, one is

row oriented, other one is column oriented. So, this is row oriented data and this is

column oriented and we need to have a join index which allows this data to be linked to

one another. So, these all these we will get in any standard database book or in standard

literature; primarily as we are following that (Refer Time: 12:02) stuff enterprise cloud

computing book for this particular thing. So, that is why we have mentioned, but this is a

very standard operation and you can get in any standard books.

(Refer Slide Time: 12:16)

So, if we look at the parallel database architectures. So, it is broadly divided into 3

aspects one is shared memory one is shared nothing another is shared disk, right.

(Refer Slide Time: 12:30)

So, I just see the picture fast then come back. So, this is a typical structure of the shared

memory, right. So, these processors different processors shared the memory here it is a

shared disk. So, different processors shared the disk here we have shared nothing. So,

individual processor has individual disk; so, in case of a shared memory suitable for

servers with multiple CPUs. So, if there are multiple CPUs. So, if there are multiple

CPUs memory address space is shared and managed by SMP operating systems like the

memory address. This is shared among these SMPs and schedule processors in parallel

exploiting the processors. So, it schedules small things so; that means, I have a shared

memory space and I basically do a execution in a parallel mode.

So on the extreme other end is shared nothing. So, cluster independent servers with each

of its having own disk space and connected by a network. So, at the with a back bone

high speed network if any server shared its own disk space and then do the rest of the

execution and if we look at that in between the thing is the shared disk like it is a hybrid

architecture. So, to say independent server cluster storage through high speed network

that can be NAS or SAN and clusters are connected to storage data via standard Ethernet

fiber, etcetera what we have shown here. So, it is a shared storage and these different

processor access this. So, based on your application type of parallelisms you need we can

go for any of this structure.

So, here we see that it is more this more efficient if the memory things are more compact

where in the other a and we if the processors are individually working on separate data

sets and there are machine to say then this could have been a advantage.

(Refer Slide Time: 14:32)

So, if we look at the advantages of parallel DB of relational database, if you do not want

to put that; what are the features of relational parallel database structures which is more

advantages for parallel this sort of operations, then the relational database efficient

execution of SQL query by exploiting multiple processors for shared nothing architecture

tables partition and distributed across possessing table, right. So, happened that I can

partition the table and every the data accountant in the table can be executed parallely

they can be distributed in the different days and the processor can work that totally

depends on your; what is your working mechanisms out there.

So, SQL optimizer handles this distributed joint. So, whenever we need to do some join

then we need to fall on the; distribute your SQL optimizer. So, distributed 2 phase

commit locking for transaction isolation between the processors. So, these are the some

of the features fault tolerant like system failures handled by transferring control to

standby system. So, I can have different standby system or some with some protocol or

some policy and then if there is a failure, then I can shift that particular execution to

some of the standby system. So, that is possible in this sight of things and restoring

computation for data though these are the things which are more required for data

warehouse type of applications.

(Refer Slide Time: 16:15)

So, there are examples of databases capable of handling parallel processing traditional

transaction processing things are oracle DB 2 SQL server data warehouse application are

some of the Vertica, Teradata, Netezza; these are the some of the things which are more

of a data warehouse type of database. Now with these background or with these things in

our in our store what we say we look at that cloud file system.

(Refer Slide Time: 16:50)

Now, as we understand it will not go something become totally we cannot through the

whole thing out of the thing and start doing something new because this database has

grown; they are fault tolerant, they are efficient we have raids and type of things we need

to exploit some of the things and put some more philosophy of which behind the cloud.

So, one of the predominant thing is cloud file Google file system was GFS and back to

back; we have a open source stuff called HDFS; Hadoop distributed file system. So,

which is what we say someone to one mechanism set Google file system. So, Google file

system, design to manage relatively large files using a very large distributed clusters of

commodity servers connected by high speed things. So, it is whether GFS or HDFS, they

are unable to work on very large data files which are distributed over this community

servers; typically some of the things are Linux servers which are interconnected through

a very high speed line.

So, they can handle failure even during read write of individual files, right, during the

read-write operation if there is a failure, it can handled fault tolerant. It is definitely a

necessity. So, if we have any that is any simple system term that P of system failure

probability of system failure is 1 minus 1 by 1 minus 1 minus probability of component

failure to the power N. So, for if the N is pretty large, then you can say that we can go for

that is the risk of this failure is minimum. So, supports parallel reads writes appends

multiple simultaneous client program. So, it is parallel read parallel write and update by

the client program and we have HDFS that is Hadoop distributed file system which is

open source implementation of GFS architecture available on Amazon EC2 cloud

platform from. So, we have HDFS which is there.

(Refer Slide Time: 19:18)

So, if we have a big picture. So, that how a typical GFS are there. So, there are some of

the components are there is master or the name nodes master node in GFS or name node

is HDFS and there are client applications and we have different chunk server in case of

GFS and data nodes in the case of HDFS in a typical cloud environment. So, single

master controls the namespace.

(Refer Slide Time: 19:47)

So, logically a single master is there which control the namespace. So, namespace is

important because it gives us that how there are stored; how data can be referred; it is

more of a; it may modes of a meta-data sort of informations which is controlled by the

master large files are broken into chunks. In case of a GFS and block; what we called in

case of a HDFS stored on commodity server, typically Linux servers called chunk

servers in GFS and data nodes in HDFS so replicated 3 times on different physical rack

network segment. So, this chunk; so, what we have? We have the GFS or HDFS in the

things below that we are having a chunk servers which are basically Linux servers chunk

server or data nodes in the things which are the main custodian of the data and they are

the every data DI is replicated on different 3 times at least 3 time on different physical

rack and network segments.

(Refer Slide Time: 21:11)

So, if you look at the read operation in GFS, client program sends the full path offset of a

file to the master, right where it wants to read or name node in case of HDFS. So, we will

refer the GFS master node and which is back to back when we it is refer to the name

node in HDFS master replies on meta-data for one of the replicas of the chunk where

these data is found, right, client caches the meta-data for faster access it reads the data

from the designated chunk server. So, master from the master; it gets that and gets the

mirror this meta-data and from there it basically access this chunk server.

(Refer Slide Time: 22:01)

So, for read operation any of these chunk server or replicated chunk server will do where

write append operation in GFS is little tricky client program sends a full path of file to

the master GFS on name node HDFS right the master replies on the meta-data for all

replicas of the chunks where the data is found the client send data to be appended into

the all chunk servers; chunk server acknowledges the receipt of the data master designate

one of the chunk server as primary the primary chunks server appends its copy of the

data into the chunk by offset choosing an offset, right. So, that it do it appending;

appending can also be done beyond end of file to account for the multiple simultaneous,

right.

So, this is a pretty interesting thing that even if you can have append end of EOF beyond

EOF because there are simultaneous writers which are writing and it basically

consolidated at later stage sends offset to the replica; if all replica do not success in

writing in the designated offset, the client retries, right. So, the all offset; so, idea is that

whenever I am looking for a data, I need to know that for all the 3 replicas, it should be

at the same offset ideally. So, that I the read processed as there is no delay in that things

because once its calculates it is directly access the other chunks on that offset, right.

(Refer Slide Time: 23:42)

So, fault tolerant in Google file system; the master maintains regular communication

with the chunk server what we say heart beat messages sort of a are you alive type of

thing and in case of a failure chunk server meta-data is updated to reflect failure for

failure of primary chunk server the master assigns a new primary clients occasionally we

will try to this failed we will try to this failed chunk server update their meta-data from

the master and retry. So, in case of a failure the chunk server meta-data after reflect the

failure. So, the chunk server meta-data says that there is a failure. So, the next time you

do not allocate or like that and for failure of the primary server itself, the master assigns

a new primary. So, it assigns a new primary to work on the thing.

(Refer Slide Time: 24:47)

And update the clients; occasionally we will try to this failed chunk server because it will

be flagged, right. Now another related stuff is big data or related concept of big data

distributed structure storage 5 system build on GFS, right. So, it is build; it is a structure

distributed structure storage file system it is build on GFS, right. So, data is accessed by

row key column key timestamp. So, if you look at. So, it is a multiple instances are

stored. So, there is a time key column key and of course, say row key which says that

where the data is there.

(Refer Slide Time: 25:26)

So, in big table each column can store arbitrary name value pair in the form of column

family and label right. So, here if you can see that these are column families and it is

labeled and they store a name value pair set of possible column family is of a table is

fixed when it is created. So, which are the different column families will be there. So,

that is somewhat fix labels within a column family can be created dynamically and at any

time. So, I can recreate the; or create the table each big table cell row and column can

store multiple versus of the data in decreasing order of the time stamp.

So; that means, it is the chronology is meant it in that fashion. So, it is multiple persons

are stored in a decreasing time stamp.

(Refer Slide Time: 26:20)

So, again we see these things. So, there are different tables there are different tablets

which are referred to this table and it is a hierarchical structure and we have a master

server it is primarily a registry or a meta-data repository. So, each table in big data is split

into rangers called tablets each table is manage by tablet server. So, its stores each

column family for a given row range in a separate distributed file called S S table. So,

this type of management goes into play. So, that my access rate end of the day the axis

rate or will be pretty high.

(Refer Slide Time: 27:03)

So, a single meta-data table is maintained by the maintained by the many meta-data

server the meta-data itself can be very large. So, the meta-data while storing this itself

can be in that case; it is again broken down into split into different tablets a root tablet

points to the other meta-data tablets.

So, if the meta-data are repository a pretty large, it is again broken down into different

tablets and there is a root tablet which coordinates with the your meta-data; this tablets

and 1 to real a 1 to emulate or realize that meta-data services supports large parallel reads

and inserts even simultaneously on the same table insertion done in sorted fashion

requires more work can be more work than the simple append, right. There is 2 for a

other databases also because once you insert it is basically you need to push the data

aside and create a insertion point where as in case of a append you are putting data at the

end of the end of that storage or data or the tables.

(Refer Slide Time: 28:22)

So, dynamo; it is developed by Amazon that supports large volume or concurrent updates

each of which can be small in size different from big table supports bulk read and writes

right end is. So, data model for dynamo; it is a simple key value pair well suited for web

based e-commerce type of applications and not dependent underlining distributed file

systems, right for failure handling conflict resolution, etcetera, they do it their self.

(Refer Slide Time: 28:59)

So, this is typical architecture of the dynamo where there are several virtual nodes and

different physical nodes and they are logical connectivities are zone.

(Refer Slide Time: 29:13)

So, if you look at the dynamo architecture. So, it is a key value pair with arbitrary value

key value pair with arbitrary arrays of bytes like it uses m d 5 generates a one twenty

eight bit1hash table hash value.

So, it basically try to map that were virtual node will be mapping to by using this has

function range of this has function is mapped as we are discussing that set of virtual

nodes arrange in a ring type of thing the object is replicated as a primary virtual node as

well as in minus one additional virtual nodes, the N is the number of physical nodes. So,

that any the objectives replicated into the things each physical nodes are managed is a

number of virtual node at a distributed position on the ring. So, if you look at that this

physical node server they are basically linked with this virtual node server.

(Refer Slide Time: 30:12)

Dynamo architecture from load balancing for transient failure network partition this can

handle write request on object that executed at one of its virtual nodes, right.

Forward all the request to all other nodes; it is executed one of the virtual node and say

in all other all other nodes which have a replicas of the object so; that means, if I am a

object; if it is replicated into another N minus one node. So, one is updated rest are being

communicate. So, there is a quorum protocol that maintains eventual consistency of the

replicas when a large number of concurrent reads and writes going on. So, this quorum

tries to find out that which are the minimum level of replica will be there to handle this

large rewrite of person.

(Refer Slide Time: 31:02)

So, in next, we are having this dynamo distributed object version right creates a new

version of the objects in his local time stamp created there are algo for column

consistency.

(Refer Slide Time: 31:12)

So, read operation R; write operation E. So, read plus write operation should be greater

than any of the system is quorum consistent there are overheads which will be coming

there is a efficient write large number of replicas are to be read and if it is for a, b, c and

read large number of large number of replicas need to be written. So, these are the 2

things which are they are; so, it is implemented by different storage engines at node level

Berkley DB used by Amazon and can be implemented to using MySQL and etcetera.

(Refer Slide Time: 31:51)

Another; the final concept what we are having is the data store Google and Amazon of a

simple traditional key value pair database stores, right, Google app engines data store in

case of Amazon what we say simple (()); all entities objects in the data store reside on in

one big table, right.

Data store exploit column oriented storage right data store as I mean store data as a

column families. So, unlike our rational traditional thing is a more of a row family or

tuple base it is called column family.

(Refer Slide Time: 32:30)

So, there are several advantages or several features or characteristics like multiple index

tables are used to support efficient query big table horizontally partitioned call sharded

and across the disk whereas, stored lexicographically in the key values other thing beside

lexicographic sorting of the data enables there is a execution of prefix and range queries

on key values entities are grouped for transactional purpose because if there is if when

we are having transaction. So, that is a set of entities which are accessed in a more

frequent way and index table to support varied varieties of queries.

So, we can have different indexes or different type of queries. So, it is not we should

understand is not a simple a low a database it is a large database. So, in order to do that; I

cannot churn the whole database. So, need to slice them appropriately. So, that based on

the different variety different queries it can be executed more efficiently.

(Refer Slide Time: 33:37)

And there are few more properties like automatically it creates indexes single property

index or there is a kind index supports the efficient lookup queries of form select all type

of things the configurable in indexes and there is a query execution indexes with highest

selectivity is chosen, right. So, it is when we do the query execution.

So, with this we will stop our discussion here. So, what we tried to discuss over see is

there different aspects we have the notion of our traditional databases which is

established fault tolerant efficient and there are different mechanism to do that. So, we

have we have also already this parallel execution things and its present. So, when we

deal with a large volume of data in the cloud which are likely to be there, then what is are

the different aspects we need to look at. So, we may not be able to follow the this column

oriented or tuple oriented relational database we need to a sorry row oriented database

we need to four for column oriented data base and there are different file system like

GFS; HDFS and over that this data store dynamo and your simple DV and those things

what which are being implemented by various inter cloud service providers CSPs for

efficient storage access I mean read write execution of very very large databases.

Thank you.

