Data Mining

Data Mining

Lessons

  1. What is Metadata?

  2. Introduction

  3. Anecdote Part 1

  4. Anecdote Part 2

  5. Data Errors

  6. Data

  7. Data Preprocessing

  8. Dimensionality Reduction

  9. Singular Value Decomposition

  10. Principal Component Analysis

  11. Numerosity Reduction

  12. Data Summarization

  13. Feature Selection

  14. Relief Algo

  15. Warehouse

  16. OLAP

  17. Association

  18. Apriori

  19. FP-Tree

  20. Arm Other

  21. Lift

  22. Classification

  23. Classification Errors

  24. Error Example

  25. Decision Tree

  26. Measures

  27. Random Forest

  28. Rule Based Classifier

  29. Rule Quality

  30. NB Theory

  31. NB Example

  32. What is Bayesian Networks?

  33. SVM Basics

  34. SVM Slack

  35. SVM Non-Linear

  36. SVM Multi Class

  37. What is perceptron?

  38. Artificial Neural Network

  39. Artificial Neural Network Training

  40. Artificial Neural Network Discussion

  41. Deep Neural Network

  42. What is Lazy Learners Method

  43. What is class imbalance?

  44. What is Ensemble?

  45. What is regression?

  46. Clustering

  47. Subspace Clustering

  48. Cluster Evaluation

  49. K-means

  50. K-medoids

  51. Hierarchical

  52. Cluster Distances

  53. Birch

  54. Cure

  55. Rock

  56. Chameleon

  57. DB Scan

  58. Optics

  59. Denclue

  60. Sting

  61. Clique

  62. Model Clustering

  63. What Anomaly in Data Mining?

  64. Statistical Framework

  65. Statistical Distributions

  66. Distance Density

  67. Clustering Outlier

  68. High Dimensional